J. Semicond. > Volume 41 > Issue 1 > Article Number: 011901

Strain tunable quantum dot based non-classical photon sources

Jingzhong Yang 1, , Michael Zopf 1, and Fei Ding 1, ,

+ Author Affiliations + Find other works by these authors

PDF

Turn off MathJax

Abstract: Semiconductor quantum dots are leading candidates for the on-demand generation of single photons and entangled photon pairs. High photon quality and indistinguishability of photons from different sources are critical for quantum information applications. The inability to grow perfectly identical quantum dots with ideal optical properties necessitates the application of post-growth tuning techniques via e.g. temperature, electric, magnetic or strain fields. In this review, we summarize the state-of-the-art and highlight the advantages of strain tunable non-classical photon sources based on epitaxial quantum dots. Using piezoelectric crystals like PMN-PT, the wavelength of single photons and entangled photon pairs emitted by InGaAs/GaAs quantum dots can be tuned reversibly. Combining with quantum light-emitting diodes simultaneously allows for electrical triggering and the tuning of wavelength or exciton fine structure. Emission from light hole exciton can be tuned, and quantum dot containing nanostructure such as nanowires have been piezo-integrated. To ensure the indistinguishability of photons from distant emitters, the wavelength drift caused by piezo creep can be compensated by frequency feedback, which is verified by two-photon interference with photons from two stabilized sources. Therefore, strain tuning proves to be a flexible and reliable tool for the development of scalable quantum dots-based non-classical photon sources.

Key words: quantum dotentangled photonsstrain tuningpiezoelectric crystalfine structure splittingon-chip

Abstract: Semiconductor quantum dots are leading candidates for the on-demand generation of single photons and entangled photon pairs. High photon quality and indistinguishability of photons from different sources are critical for quantum information applications. The inability to grow perfectly identical quantum dots with ideal optical properties necessitates the application of post-growth tuning techniques via e.g. temperature, electric, magnetic or strain fields. In this review, we summarize the state-of-the-art and highlight the advantages of strain tunable non-classical photon sources based on epitaxial quantum dots. Using piezoelectric crystals like PMN-PT, the wavelength of single photons and entangled photon pairs emitted by InGaAs/GaAs quantum dots can be tuned reversibly. Combining with quantum light-emitting diodes simultaneously allows for electrical triggering and the tuning of wavelength or exciton fine structure. Emission from light hole exciton can be tuned, and quantum dot containing nanostructure such as nanowires have been piezo-integrated. To ensure the indistinguishability of photons from distant emitters, the wavelength drift caused by piezo creep can be compensated by frequency feedback, which is verified by two-photon interference with photons from two stabilized sources. Therefore, strain tuning proves to be a flexible and reliable tool for the development of scalable quantum dots-based non-classical photon sources.

Key words: quantum dotentangled photonsstrain tuningpiezoelectric crystalfine structure splittingon-chip



References:

[1]

Briegel H J, Dür W, Cirac J I, et al. Quantum repeaters: The role of imperfect local operations in quantum communication. Phys Rev Lett, 1998, 81(26), 5932

[2]

Simon C, de Riedmatten H, Afzelius M, et al. Quantum repeaters with photon pair sources and multimode memories. Phys Rev Lett, 2007, 98(19), 190503

[3]

Sangouard N, Simon C, de Riedmatten H, et al. Quantum repeaters based on atomic ensembles and linear optics. Rev Mod Phys, 2011, 83(1), 33

[4]

Kok P, Munro W J, Nemoto K, et al. Linear optical quantum computing with photonic qubits. Rev Mod Phys, 2007, 79(1), 135

[5]

Knill E, Laflamme R, Milburn G J. A scheme for efficient quantum computation with linear optics. Nature, 2001, 409(6816), 46

[6]

Gisin N, Ribordy G, Tittel W, et al. Quantum cryptography. Rev Mod Phys, 2002, 74(1), 145

[7]

Ekert A K. Quantum cryptography based on Bell’s theorem. Phys Rev Lett, 1991, 67(6), 661

[8]

Dowling J P, Seshadreesan K P. Quantum optical technologies for metrology, sensing, and imaging. J Lightwave Technol, 2015, 33(12), 2359

[9]

Giovannetti V, Lloyd S, Maccone L. Quantum metrology. Phys Rev Lett, 2006, 96(1), 010401

[10]

Afek I, Ambar O, Silberberg Y. High-NOON states by mixing quantum and classical light. Science, 2010, 328(5980), 879

[11]

Schumacher B. Quantum coding. Phys Rev A, 1995, 51(4), 2738

[12]

Bennett C H, Brassard G, Popescu S, et al. Purification of noisy entanglement and faithful teleportation via noisy channels. Phys Rev Lett, 1996, 76(5), 722

[13]

Deutsch D, Ekert A, Jozsa R, et al. Quantum privacy amplification and the security of quantum cryptography over noisy channels. Phys Rev Lett, 1996, 77(1), 2818

[14]

Burnham D C, Weinberg D L. Observation of simultaneity in parametric production of optical photon pairs. Phys Rev Lett, 1970, 25(2), 84

[15]

Shih Y H, Alley C O. New type of Einstein-Podolsky-Rosen-Bohm experiment using pairs of light quanta produced by optical parametric down conversion. Phys Rev Lett, 1988, 61(26), 2921

[16]

Kwiat P G, Mattle K, Weinfurter H, et al. New high-intensity source of polarization-entangled photon pairs. Phys Rev Lett, 1995, 75(24), 4337

[17]

Bennett C H, Brassard G, Crépeau C, et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys Rev Lett, 1993, 70(13), 1895

[18]

Vaidman L. Teleportation of quantum states. Phys Rev A, 1994, 49(2), 1473

[19]

Bouwmeester D, Pan J W, Mattle K, et al. Experimental quantum teleportation. Nature, 1997, 390(6660), 575

[20]

Boschi D, Branca S, De Martini F, et al. Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys Rev Lett, 1998, 80(6), 1121

[21]

Nilsson J, Stevenson R M, Chan M H A, et al. Quantum teleportation using a light-emitting diode. Nat Photonics, 2013, 7(4), 311

[22]

Huwer J, Stevenson R M, Skiba-Szymanska J, et al. Quantum-dot-based telecommunication-wavelength quantum relay. Phys Rev Appl, 2017, 8(2), 1

[23]

Żukowski M, Zeilinger A, Horne M A, et al. " Event-ready-detectors” bell experiment via entanglement swapping. Phys Rev Lett, 1993, 71(26), 4287

[24]

Pan J W, Bouwmeester D, Weinfurter H, et al. Experimental entanglement swapping: entangling photons that never interacted. Phys Rev Lett, 1998, 80(18), 3891

[25]

Sun Q C, Mao Y L, Jiang Y F, et al. Entanglement swapping with independent sources over an optical-fiber network. Phys Rev A, 2017, 95(3), 32306

[26]

Zhang Y, Agnew M, Roger T, et al. Simultaneous entanglement swapping of multiple orbital angular momentum states of light. Nat Commun, 2017, 8(1), 1

[27]

Pan J W, Simon C, Brukner Č, et al. Entanglement purification for quantum communication. Nature, 2001, 410(6832), 1067

[28]

Bouwmeester D, Pan J W, Bongaerts M, et al. Observation of three-photon greenberger-horne-zeilinger entanglement. Phys Rev Lett, 1999, 82(7), 1345

[29]

Zhang C, Huang Y F, Liu B H, et al. Experimental generation of a high-fidelity four-photon linear cluster state. Phys Rev A, 2016, 93(6), 062329

[30]

Pan J W, Daniell M, Gasparoni S, et al. Experimental demonstration of four-photon entanglement and high-fidelity teleportation. Phys Rev Lett, 2001, 86(20), 4435

[31]

Lu C Y, Zhou X Q, Gühne O, et al. Experimental entanglement of six photons in graph states. Nat Phys, 2007, 3(2), 91

[32]

Michler P, Kiraz A, Becher C, et al. A quantum dot single-photon turnstile device. Science, 2000, 290(5500), 2282

[33]

Michler P, Imamoğlu A, Mason M D, et al. Quantum correlation among photons from a single quantum dot at room temperature. Nature, 2000, 406(6799), 968

[34]

Radnaev A G, Dudin Y O, Zhao R, et al. A quantum memory with telecom-wavelength conversion. Nat Phys, 2010, 6(11), 894

[35]

Chanelière T, Matsukevich D N, Jenkins S D, et al. Quantum telecommunication based on atomic cascade transitions. Phys Rev Lett, 2006, 96(9), 093604

[36]

Stevenson R M, Young R J, Atkinson P, et al. A semiconductor source of triggered entangled photon pairs. Nature, 2006, 439(7073), 179

[37]

Bennett A J, Pooley M A, Stevenson R M, et al. Electric-field-induced coherent coupling of the exciton states in a single quantum dot. Nat Phys, 2010, 6(12), 947

[38]

Salter C L, Stevenson R M, Farrer I, et al. An entangled-light-emitting diode. Nature, 2010, 465(7298), 594

[39]

Chen Y, Zhang J, Zopf M, et al. Wavelength-tunable entangled photons from silicon-integrated III–V quantum dots. Nat Commun, 2016, 7, 10387

[40]

Harris N C, Grassani D, Simbula A, et al. Integrated source of spectrally filtered correlated photons for large-scale quantum photonic systems. Phys Rev X, 2014, 4(4), 041047

[41]

Zopf M, Keil R, Chen Y, et al. Entanglement swapping with semiconductor-generated photons. Phys Rev Lett, 2001, 9, 123

[42]

Rogers L J, Jahnke K D, Teraji T, et al. Multiple intrinsically identical single-photon emitters in the solid state. Nat Commun, 2014, 5(1), 4379

[43]

Morfa A J, Gibson B C, Karg M, et al. Single-photon emission and quantum characterization of zinc oxide defects. Nano Lett, 2012, 12(2), 949

[44]

Kurtsiefer C, Mayer S, Zarda P, et al. Stable solid-state source of single photons. Phys Rev Lett, 2000, 85(2), 290

[45]

Simpson D A, Ampem-Lassen E, Gibson B C, et al. A highly efficient two level diamond based single photon source. App Phys Lett, 2009, 94(20), 203107

[46]

Aharonovich I, Englund D, Toth M. Solid-state single-photon emitters. Nat Photon, 2016, 10(10), 631

[47]

Boyd R W, Lukishova S G, Zadkov V N. Quantum photonics: pioneering advances and emerging applications. Springer, 2019

[48]

Michler P. Single semiconductor quantum dots. Berlin Heidelberg: Springer-Verlag, 2009

[49]

Dupertuis M A, Karlsson K F, Oberli D Y, et al. Symmetries and the polarized optical spectra of exciton complexes in quantum dots. Phys Rev Lett, 2011, 107(12), 127403

[50]

Bayer M, Ortner G, Stern O, et al. Fine structure of neutral and charged excitons in self-assembled In(Ga)As/(Al)GaAs quantum dots. Phys Rev B, 2002, 65(19), 195315

[51]

Stevenson R M, Hudson A J, Bennett A J, et al. Evolution of entanglement between distinguishable light states. Phys Rev Lett, 2008, 101(17), 170501

[52]

Trotta R, Wildmann J S, Zallo E, et al. Highly entangled photons from hybrid piezoelectric-semiconductor quantum dot devices. Nano Lett, 2014, 14(6), 3439

[53]

Hudson A J, Stevenson R M, Bennett A J, et al. Coherence of an entangled exciton-photon state. Phys Rev Lett, 2007, 99(26), 266802

[54]

Keil R, Zopf M, Chen Y, et al. Solid-state ensemble of highly entangled photon sources at rubidium atomic transitions. Nat Commun, 2017, 8, 15501

[55]

Kiravittaya S, Lee H S, Balet L, et al. Tuning optical modes in slab photonic crystal by atomic layer deposition and laser-assisted oxidation. J Appl Phys, 2011, 109(5), 053115

[56]

Ellis D J P, Stevenson R M, Young R J, et al. Control of fine-structure splitting of individual InAs quantum dots by rapid thermal annealing. Appl Phys Lett, 2007, 90(1), 011907

[57]

Pooley M A, Bennett A J, Stevenson R M, et al. Energy-tunable quantum dot with minimal fine structure created by using simultaneous electric and magnetic fields. Phys Rev Appl, 2014, 1(2), 024002

[58]

Ghali M, Ohtani K, Ohno Y, et al. Generation and control of polarization-entangled photons from GaAs island quantum dots by an electric field. Nat Commun, 2012, 3, 661

[59]

Muller A, Fang W, Lawall J, et al. Creating polarization-entangled photon pairs from a semiconductor quantum dot using the optical stark effect. Phys Rev Lett, 2009, 103(21), 217402

[60]

Ding F, Singh R, Plumhof J D, et al. Tuning the exciton binding energies in single self-assembled InGaAs/GaAs quantum dots by piezoelectric-induced biaxial stress. Phys Rev Lett, 2010, 104(6), 2

[61]

Zhang J, Ding F, Zallo E, et al. A nanomembrane-based wavelength-tunable high-speed single-photon-emitting diode. Nano Lett, 2013, 13(12), 5808

[62]

Zhang J, Zallo E, Höfer B, et al. Electric-field-induced energy tuning of on-demand entangled-photon emission from self-assembled quantum dots. Nano Lett, 2017, 17(1), 501

[63]

Zhang J, Huo Y, Ding F, et al. Energy-tunable single-photon light-emitting diode by strain fields. Appl Phys B, 2016, 122(1), 1

[64]

Höfer B, Zhang J, Wildmann J, et al. Independent tuning of excitonic emission energy and decay time in single semiconductor quantum dots. Appl Phys Lett, 2017, 110(15), 151102

[65]

Zhang J, Wildmann J S, Ding F, et al. High yield and ultrafast sources of electrically triggered entangled-photon pairs based on strain-tunable quantum dots. Nat Commun, 2015, 6, 10067

[66]

Huo Y H, Witek B J, Kumar S, et al. A light-hole exciton in a quantum dot. Nat Phys, 2013, 10(1), 46

[67]

Zhang J, Huo Y, Rastelli A, et al. Single photons on-demand from light-hole excitons in strain-engineered quantum dots. Nano Lett, 2015, 15(1), 422

[68]

Wang J, Gong M, Guo G C, et al. Towards scalable entangled photon sources with self-assembled InAs/GaAs quantum dots. Phys Rev Lett, 2015, 115(6), 067401

[69]

Trotta R, Martín-Sánchez J, Daruka I, et al. Energy-tunable sources of entangled photons: a viable concept for solid-state-based quantum relays. Phys Rev Lett, 2015, 114(15), 150502

[70]

Chen Y, Zadeh I E, Jöns K D, et al. Controlling the exciton energy of a nanowire quantum dot by strain fields. Appl Phys Lett, 2016, 108(18), 182103

[71]

Versteegh M A M, Reimer M E, Jöns K D, et al. Observation of strongly entangled photon pairs from a nanowire quantum dot. Nat Commun, 2014, 5, 5298

[72]

Bulgarini G, Reimer M E, Bavinck M B, et al. Nanowire waveguides launching single photons in a Gaussian mode for ideal fiber coupling. Nano Lett, 2014, 14, 1428

[73]

Davanço M, Rakher M T, Schuh D, et al. A circular dielectric grating for vertical extraction of single quantum dot emission. Appl Phys Lett, 2011, 99(4), 041102

[74]

Liu J, Su R, Wei Y, et al. A solid-state source of strongly entangled photon pairs with high brightness and indistinguishability. Nat Nanotechnol, 2019, 14(6), 586

[75]

Wang H, Hu H, Chung T H, et al. On-demand semiconductor source of entangled photons which simultaneously has high fidelity, efficiency, and indistinguishability. Phys Rev Lett, 2019, 122(11), 113602

[76]

Moczała-Dusanowska M, Dusanowski Ł, Gerhardt S, et al. Strain-tunable single-photon source based on a quantum dot–micropillar system. ACS Photonics, 2019, 6(8), 2025

[77]

Jung H, Gweon D G. Creep characteristics of piezoelectric actuators. Rev Sci Instrum, 2000, 71(4), 1896

[78]

Zopf M, Macha T, Keil R, et al. Frequency feedback for two-photon interference from separate quantum dots. Phys Rev B, 2018, 98(16), 161302

[79]

Chuang S L. Physics of photonic devices. Hoboken, NJ: Wiley, 2009

[80]

Pikus G E. Effect of deformation on the hole energy spectrum of germanium and silicon. Sov Phys-Solid State, 1960, 11502

[81]

Bir G L, Pikus G E. Symmetry and strain-induced effects in semiconductors. New York: Wiley, 1974

[82]

Trotta R, Atkinson P, Plumhof J D, et al. Nanomembrane quantum-light-emitting diodes integrated onto piezoelectric actuators. Adv Mater, 2012, 24(20), 2668

[83]

Kumar S, Trotta R, Zallo E, et al. Strain-induced tuning of the emission wavelength of high quality GaAs/AlGaAs quantum dots in the spectral range of the 87Rb D2 lines. Appl Phys Lett, 2011, 99(16), 161118

[84]

Plumhof J D, Trotta R, Křápek V, et al. Tuning of the valence band mixing of excitons confined in GaAs/AlGaAs quantum dots via piezoelectric-induced anisotropic strain. Phys Rev B, 2013, 87(7), 075311

[85]

Benson O, Santori C, Pelton M, et al. Regulated and entangled photons from a single quantum dot. Phys Rev Lett, 2000, 84(11), 2513

[86]

Ward M B, Dean M C, Stevenson R M, et al. Coherent dynamics of a telecom-wavelength entangled photon source. Nat Commun, 2014, 5(1), 3316

[87]

Santori C, Fattal D, Pelton M, et al. Polarization-correlated photon pairs from a single quantum dot. Phys Rev B, 2002, 66(4), 045308

[88]

Stevenson R M, Thompson R M, Shields A J, et al. Quantum dots as a photon source for passive quantum key encoding. Phys Rev B, 2002, 66(8), 081302

[89]

Bester G. Electronic excitations in nanostructures: an empirical pseudopotential based approach. J Phys: Condens Matter, 2008, 21(2), 023202

[90]

Ding F, Ji H, Chen Y, et al. Stretchable graphene: a close look at fundamental parameters through biaxial straining. Nano Lett, 2010, 10(9), 3453

[91]

Zallo E, Trotta R, Křápek V, et al. Strain-induced active tuning of the coherent tunneling in quantum dot molecules. Phys Rev B, 2014, 89(24), 241303

[92]

Meesala S, Sohn Y I, Pingault B, et al. Strain engineering of the silicon-vacancy center in diamond. Phys Rev B, 2018, 97(20), 205444

[93]

Kiršanskė G, Thyrrestrup H, Daveau R S, et al. Indistinguishable and efficient single photons from a quantum dot in a planar nanobeam waveguide. Phys Rev B, 2017, 96(16), 165306

[94]

Lodahl P. Quantum-dot based photonic quantum networks. Quantum Sci Technol, 2017, 3(1), 013001

[95]

Daveau R S, Balram K C, Pregnolato T, et al. Efficient fiber-coupled single-photon source based on quantum dots in a photonic-crystal waveguide. Optica, 2017, 4(2), 178

[96]

Pan J W, Gasparoni S, Ursin R. Experimental entanglement purification of arbitrary unknown states. Nature, 2003, 423, 417

[97]

Chen L K, Yong H L, Xu P, et al. Experimental nested purification for a linear optical quantum repeater. Nat Photon, 2017, 11(11), 695

[98]

Sheng Y B, Zhou L, Long G L. Hybrid entanglement purification for quantum repeaters. Phys Rev A, 2013, 88(2), 022302

[99]

de Riedmatten H, Marcikic I, Tittel W, et al. Long distance quantum teleportation in a quantum relay configuration. Phys Rev Lett, 2004, 92(4), 047904

[100]

Bennett A J, Unitt D C, See P, et al. Electrical control of the uncertainty in the time of single photon emission events. Phys Rev B, 2005, 72(3), 033316

[101]

Reischle M, Kessler C, Schulz W M, et al. Triggered single-photon emission from electrically excited quantum dots in the red spectral range. Appl Phys Lett, 2010, 97(14), 143513

[102]

Hargart F, Kessler C A, Schwarzbäck T, et al. Electrically driven quantum dot single-photon source at 2 GHz excitation repetition rate with ultra-low emission time jitter. Appl Phys Lett, 2013, 102(1), 011126

[103]

Troncale V, Karlsson K F, Pelucchi E, et al. Control of valence band states in pyramidal quantum dot-in-dot semiconductor heterostructures. Appl Phys Lett, 2007, 91(24), 241909

[104]

Karlsson K F, Dupertuis M A, Oberli D Y, et al. Fine structure of exciton complexes in high-symmetry quantum dots: Effects of symmetry breaking and symmetry elevation. Phys Rev B, 2010, 81(16), 161307

[105]

Vrijen R, Yablonovitch E. A spin-coherent semiconductor photo-detector for quantum communication. Physica E, 2001, 10(4), 569

[106]

Sleiter D, Brinkman W F. Using holes in GaAs as qubits: An estimate of the Rabi frequency in the presence of an external RF field. Phys Rev B, 2006, 74(15), 153312

[107]

Kosaka H, Inagaki T, Rikitake Y, et al. Spin state tomography of optically injected electrons in a semiconductor. Nature, 2009, 457(7230), 702

[108]

L Besombes L, K Kheng K, Martrou D. Exciton and biexciton fine structure in single elongated islands grown on a vicinal surface. Phys Rev Lett, 2000, 85(2), 425

[109]

Belhadj T, Amand T, Kunold A, et al. Impact of heavy hole-light hole coupling on optical selection rules in GaAs quantum dots. Appl Phys Lett, 2010, 97(5), 051111

[110]

Zhou W, Shen H, Pamulapati J, et al. Heavy- and light-hole band crossing in a variable-strain quantum-well heterostructure. Phys Rev B, 1995, 51(8), 5461

[111]

Zhou W, Shen H, J Pamulapati J, et al. Simultaneous blue- and red-shift of light-hole and heavy-hole band in a novel variable-strain quantum well heterostructure. Appl Phys Lett, 1995, 66(5), 607

[112]

Huo Y H, Rastelli A, Schmidt O G. Ultra-small excitonic fine structure splitting in highly symmetric quantum dots on GaAs (001) substrate. Appl Phys Lett, 2013, 102(15), 152105

[113]

Witek B J, Heeres R W, Perinetti U, et al. Measurement of the g-factor tensor in a quantum dot and disentanglement of exciton spins. Phys Rev B, 2011, 84(19), 195305

[114]

Wang X L, Chen L K, W Li W, et al. Experimental ten-photon entanglement. Phys Rev Lett, 2016, 117(21), 210502

[115]

Scarani V, de Riedmatten H, Marcikic I, et al. Four-photon correction in two-photon Bell experiments. Eur Phys J D, 2005, 32(1), 129

[116]

Seidl S, Högele A, Kroner M, et al. Tuning the cross-gap transition energy of a quantum dot by uniaxial stress. Physica E, 2006, 32(1), 14

[117]

Bryant G W, Zieliński M, N Malkova N, et al. Effect of mechanical strain on the optical properties of quantum dots: controlling exciton shape, orientation, and phase with a mechanical strain. Phys Rev Lett, 2010, 105(6), 067404

[118]

Michler P. Quantum dots for quantum information technologies. Springer International Publishing, 2017

[119]

Creative Commons Attribution 4.0 International License. http://creativecommons.org/licenses/by/4.0/.

[120]

Gong M, Zhang W, Guo G C, et al. Exciton polarization, fine-structure splitting, and the asymmetry of quantum dots under uniaxial stress. Phys Rev Lett, 2011, 106(22), 227401

[121]

Singh R, Bester G. Lower bound for the excitonic fine structure splitting in self-assembled quantum dots. Phys Rev Lett, 2010, 104(19), 196803

[122]

Müller M, Bounouar S, Jöns K D, et al. On-demand generation of indistinguishable polarization-entangled photon pairs. Nat Photonics, 2014, 8(3), 224

[123]

Altepeter J B, Jeffrey E R, Kwiat P G. Photonic state tomography. Adv Atom, Mol, Opt Phys, 2015, 52, 105

[124]

James D F V, Kwiat P G, Munro W J, et al. Measurement of qubits. Phys Rev A, 2001, 64(5), 052312

[125]

Dousse A, Suffczyński J, Beveratos A, et al. Ultrabright source of entangled photon pairs. Nature, 2010, 466(7303), 217

[126]

Chen Y, Zopf M, Keil R, et al. Highly-efficient extraction of entangled photons from quantum dots using a broadband optical antenna. Nat Commun, 2018, 9(1), 1

[127]

Kuhn A, Hennrich M, Rempe G. Deterministic single-photon source for distributed quantum networking. Phys Rev Lett, 2002, 89(6), 067901

[128]

Flagg E B, Muller A, Polyakov S V, et al. Interference of single photons from two separate semiconductor quantum dots. Phys Rev Lett, 2010, 104(13), 137401

[129]

Friedler I, Sauvan C, Hugonin J P, et al. Solid-state single photon sources: the nanowire antenna. Opt Express, 2009, 17(4), 2095

[130]

Heindel T, Schneider C, Lermer M, et al. Electrically driven quantum dot-micropillar single photon source with 34% overall efficiency. Appl Phys Lett, 2010, 96(1), 011107

[131]

Reimer M E, Bulgarini G, Akopian N, et al. Bright single-photon sources in bottom-up tailored nanowires. Nat Commun, 2012, 3, 737

[132]

Bulgarini G, D Dalacu D, P J Poole P J, et al. Far field emission profile of pure wurtzite InP nanowires. Appl Phys Lett, 2014, 105(19), 191113

[133]

Gregersen N, Nielsen T R, Claudon J, et al. Controlling the emission profile of a nanowire with a conical taper. Opt Lett, OL, 2008, 33(15), 1693

[134]

Dalacu D, Mnaymneh K, Lapointe J, et al. Ultraclean emission from InAsP quantum dots in defect-free wurtzite InP nanowires. Nano Lett, 2012, 12(11), 5919

[135]

Reimer M E, Bulgarini G, Fognini A, et al. Overcoming power broadening of the quantum dot emission in a pure wurtzite nanowire. Phys Rev B, 2016, 93(19), 195316

[136]

Signorello G, Karg S, Björk M T, et al. Tuning the light emission from GaAs nanowires over 290 meV with uniaxial strain. Nano Lett, 2013, 13(3), 917

[137]

Kremer P E, Dada A C, Kumar P, et al. Strain-tunable quantum dot embedded in a nanowire antenna. Phys Rev B, 2014, 90(20), 201408

[138]

A Politi A, Cryan M J, Rarity J G, et al. Silica-on-silicon waveguide quantum circuits. Science, 2008, 320(5876), 646

[139]

Silverstone J W, Bonneau D, Ohira K, et al. On-chip quantum interference between silicon photon-pair sources. Nat Photonics, 2014, 8(2), 104

[140]

Najafi N, Mower J, Harris N C, et al. On-chip detection of non-classical light by scalable integration of single-photon detectors. Nat Commun, 2015, 6, 5873

[141]

O’Brien J L, Furusawa A, Vučković J. Photonic quantum technologies. Nat Photonics, 2009, 3(12), 687

[142]

Plumhof J D, Křápek V, Ding F, et al. Strain-induced anticrossing of bright exciton levels in single self-assembled GaAs/Al xGa1– xAs and In xGa1– xAs/GaAs quantum dots. Phys Rev B, 2011, 83(12), 121302

[143]

Giesz V, Portalupi S L, Grange T, et al. Cavity-enhanced two-photon interference using remote quantum dot sources. Phys Rev B, 2015, 92(16), 161302

[144]

Thoma A, Schnauber P, Böhm J, et al. Two-photon interference from remote deterministic quantum dot microlenses. Appl Phys Lett, 2017, 110(1), 011104

[145]

Akopian N, Trotta R, Zallo E, et al. An artificial atom locked to natural atoms. ArXiv:13022005 [Cond-Mat, Physics:Physics, Physics:Quant-Ph], 2013

[146]

Prechtel J H, Kuhlmann A V, Houel J, et al. Frequency-stabilized source of single photons from a solid-state qubit. Phys Rev X, 2013, 3(4), 041006

[147]

Metcalfe M, Muller A, Solomon G S, et al. Active feedback of a Fabry-Perot cavity to the emission of a single InAs/GaAs quantum dot. J Opt Soc Am B, 2009, 26(12), 2308

[148]

Brunner K, Abstreiter G, Böhm G, et al. Sharp-line photoluminescence and two-photon absorption of zero-dimensional biexcitons in a GaAs/AlGaAs structure. Phys Rev Lett, 1994, 73(8), 1138

[149]

Bylander J, Robert-Philip I, Abram I. Interference and correlation of two independent photons. Eur Phys J D, 2003, 22(2), 295

[1]

Briegel H J, Dür W, Cirac J I, et al. Quantum repeaters: The role of imperfect local operations in quantum communication. Phys Rev Lett, 1998, 81(26), 5932

[2]

Simon C, de Riedmatten H, Afzelius M, et al. Quantum repeaters with photon pair sources and multimode memories. Phys Rev Lett, 2007, 98(19), 190503

[3]

Sangouard N, Simon C, de Riedmatten H, et al. Quantum repeaters based on atomic ensembles and linear optics. Rev Mod Phys, 2011, 83(1), 33

[4]

Kok P, Munro W J, Nemoto K, et al. Linear optical quantum computing with photonic qubits. Rev Mod Phys, 2007, 79(1), 135

[5]

Knill E, Laflamme R, Milburn G J. A scheme for efficient quantum computation with linear optics. Nature, 2001, 409(6816), 46

[6]

Gisin N, Ribordy G, Tittel W, et al. Quantum cryptography. Rev Mod Phys, 2002, 74(1), 145

[7]

Ekert A K. Quantum cryptography based on Bell’s theorem. Phys Rev Lett, 1991, 67(6), 661

[8]

Dowling J P, Seshadreesan K P. Quantum optical technologies for metrology, sensing, and imaging. J Lightwave Technol, 2015, 33(12), 2359

[9]

Giovannetti V, Lloyd S, Maccone L. Quantum metrology. Phys Rev Lett, 2006, 96(1), 010401

[10]

Afek I, Ambar O, Silberberg Y. High-NOON states by mixing quantum and classical light. Science, 2010, 328(5980), 879

[11]

Schumacher B. Quantum coding. Phys Rev A, 1995, 51(4), 2738

[12]

Bennett C H, Brassard G, Popescu S, et al. Purification of noisy entanglement and faithful teleportation via noisy channels. Phys Rev Lett, 1996, 76(5), 722

[13]

Deutsch D, Ekert A, Jozsa R, et al. Quantum privacy amplification and the security of quantum cryptography over noisy channels. Phys Rev Lett, 1996, 77(1), 2818

[14]

Burnham D C, Weinberg D L. Observation of simultaneity in parametric production of optical photon pairs. Phys Rev Lett, 1970, 25(2), 84

[15]

Shih Y H, Alley C O. New type of Einstein-Podolsky-Rosen-Bohm experiment using pairs of light quanta produced by optical parametric down conversion. Phys Rev Lett, 1988, 61(26), 2921

[16]

Kwiat P G, Mattle K, Weinfurter H, et al. New high-intensity source of polarization-entangled photon pairs. Phys Rev Lett, 1995, 75(24), 4337

[17]

Bennett C H, Brassard G, Crépeau C, et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys Rev Lett, 1993, 70(13), 1895

[18]

Vaidman L. Teleportation of quantum states. Phys Rev A, 1994, 49(2), 1473

[19]

Bouwmeester D, Pan J W, Mattle K, et al. Experimental quantum teleportation. Nature, 1997, 390(6660), 575

[20]

Boschi D, Branca S, De Martini F, et al. Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys Rev Lett, 1998, 80(6), 1121

[21]

Nilsson J, Stevenson R M, Chan M H A, et al. Quantum teleportation using a light-emitting diode. Nat Photonics, 2013, 7(4), 311

[22]

Huwer J, Stevenson R M, Skiba-Szymanska J, et al. Quantum-dot-based telecommunication-wavelength quantum relay. Phys Rev Appl, 2017, 8(2), 1

[23]

Żukowski M, Zeilinger A, Horne M A, et al. " Event-ready-detectors” bell experiment via entanglement swapping. Phys Rev Lett, 1993, 71(26), 4287

[24]

Pan J W, Bouwmeester D, Weinfurter H, et al. Experimental entanglement swapping: entangling photons that never interacted. Phys Rev Lett, 1998, 80(18), 3891

[25]

Sun Q C, Mao Y L, Jiang Y F, et al. Entanglement swapping with independent sources over an optical-fiber network. Phys Rev A, 2017, 95(3), 32306

[26]

Zhang Y, Agnew M, Roger T, et al. Simultaneous entanglement swapping of multiple orbital angular momentum states of light. Nat Commun, 2017, 8(1), 1

[27]

Pan J W, Simon C, Brukner Č, et al. Entanglement purification for quantum communication. Nature, 2001, 410(6832), 1067

[28]

Bouwmeester D, Pan J W, Bongaerts M, et al. Observation of three-photon greenberger-horne-zeilinger entanglement. Phys Rev Lett, 1999, 82(7), 1345

[29]

Zhang C, Huang Y F, Liu B H, et al. Experimental generation of a high-fidelity four-photon linear cluster state. Phys Rev A, 2016, 93(6), 062329

[30]

Pan J W, Daniell M, Gasparoni S, et al. Experimental demonstration of four-photon entanglement and high-fidelity teleportation. Phys Rev Lett, 2001, 86(20), 4435

[31]

Lu C Y, Zhou X Q, Gühne O, et al. Experimental entanglement of six photons in graph states. Nat Phys, 2007, 3(2), 91

[32]

Michler P, Kiraz A, Becher C, et al. A quantum dot single-photon turnstile device. Science, 2000, 290(5500), 2282

[33]

Michler P, Imamoğlu A, Mason M D, et al. Quantum correlation among photons from a single quantum dot at room temperature. Nature, 2000, 406(6799), 968

[34]

Radnaev A G, Dudin Y O, Zhao R, et al. A quantum memory with telecom-wavelength conversion. Nat Phys, 2010, 6(11), 894

[35]

Chanelière T, Matsukevich D N, Jenkins S D, et al. Quantum telecommunication based on atomic cascade transitions. Phys Rev Lett, 2006, 96(9), 093604

[36]

Stevenson R M, Young R J, Atkinson P, et al. A semiconductor source of triggered entangled photon pairs. Nature, 2006, 439(7073), 179

[37]

Bennett A J, Pooley M A, Stevenson R M, et al. Electric-field-induced coherent coupling of the exciton states in a single quantum dot. Nat Phys, 2010, 6(12), 947

[38]

Salter C L, Stevenson R M, Farrer I, et al. An entangled-light-emitting diode. Nature, 2010, 465(7298), 594

[39]

Chen Y, Zhang J, Zopf M, et al. Wavelength-tunable entangled photons from silicon-integrated III–V quantum dots. Nat Commun, 2016, 7, 10387

[40]

Harris N C, Grassani D, Simbula A, et al. Integrated source of spectrally filtered correlated photons for large-scale quantum photonic systems. Phys Rev X, 2014, 4(4), 041047

[41]

Zopf M, Keil R, Chen Y, et al. Entanglement swapping with semiconductor-generated photons. Phys Rev Lett, 2001, 9, 123

[42]

Rogers L J, Jahnke K D, Teraji T, et al. Multiple intrinsically identical single-photon emitters in the solid state. Nat Commun, 2014, 5(1), 4379

[43]

Morfa A J, Gibson B C, Karg M, et al. Single-photon emission and quantum characterization of zinc oxide defects. Nano Lett, 2012, 12(2), 949

[44]

Kurtsiefer C, Mayer S, Zarda P, et al. Stable solid-state source of single photons. Phys Rev Lett, 2000, 85(2), 290

[45]

Simpson D A, Ampem-Lassen E, Gibson B C, et al. A highly efficient two level diamond based single photon source. App Phys Lett, 2009, 94(20), 203107

[46]

Aharonovich I, Englund D, Toth M. Solid-state single-photon emitters. Nat Photon, 2016, 10(10), 631

[47]

Boyd R W, Lukishova S G, Zadkov V N. Quantum photonics: pioneering advances and emerging applications. Springer, 2019

[48]

Michler P. Single semiconductor quantum dots. Berlin Heidelberg: Springer-Verlag, 2009

[49]

Dupertuis M A, Karlsson K F, Oberli D Y, et al. Symmetries and the polarized optical spectra of exciton complexes in quantum dots. Phys Rev Lett, 2011, 107(12), 127403

[50]

Bayer M, Ortner G, Stern O, et al. Fine structure of neutral and charged excitons in self-assembled In(Ga)As/(Al)GaAs quantum dots. Phys Rev B, 2002, 65(19), 195315

[51]

Stevenson R M, Hudson A J, Bennett A J, et al. Evolution of entanglement between distinguishable light states. Phys Rev Lett, 2008, 101(17), 170501

[52]

Trotta R, Wildmann J S, Zallo E, et al. Highly entangled photons from hybrid piezoelectric-semiconductor quantum dot devices. Nano Lett, 2014, 14(6), 3439

[53]

Hudson A J, Stevenson R M, Bennett A J, et al. Coherence of an entangled exciton-photon state. Phys Rev Lett, 2007, 99(26), 266802

[54]

Keil R, Zopf M, Chen Y, et al. Solid-state ensemble of highly entangled photon sources at rubidium atomic transitions. Nat Commun, 2017, 8, 15501

[55]

Kiravittaya S, Lee H S, Balet L, et al. Tuning optical modes in slab photonic crystal by atomic layer deposition and laser-assisted oxidation. J Appl Phys, 2011, 109(5), 053115

[56]

Ellis D J P, Stevenson R M, Young R J, et al. Control of fine-structure splitting of individual InAs quantum dots by rapid thermal annealing. Appl Phys Lett, 2007, 90(1), 011907

[57]

Pooley M A, Bennett A J, Stevenson R M, et al. Energy-tunable quantum dot with minimal fine structure created by using simultaneous electric and magnetic fields. Phys Rev Appl, 2014, 1(2), 024002

[58]

Ghali M, Ohtani K, Ohno Y, et al. Generation and control of polarization-entangled photons from GaAs island quantum dots by an electric field. Nat Commun, 2012, 3, 661

[59]

Muller A, Fang W, Lawall J, et al. Creating polarization-entangled photon pairs from a semiconductor quantum dot using the optical stark effect. Phys Rev Lett, 2009, 103(21), 217402

[60]

Ding F, Singh R, Plumhof J D, et al. Tuning the exciton binding energies in single self-assembled InGaAs/GaAs quantum dots by piezoelectric-induced biaxial stress. Phys Rev Lett, 2010, 104(6), 2

[61]

Zhang J, Ding F, Zallo E, et al. A nanomembrane-based wavelength-tunable high-speed single-photon-emitting diode. Nano Lett, 2013, 13(12), 5808

[62]

Zhang J, Zallo E, Höfer B, et al. Electric-field-induced energy tuning of on-demand entangled-photon emission from self-assembled quantum dots. Nano Lett, 2017, 17(1), 501

[63]

Zhang J, Huo Y, Ding F, et al. Energy-tunable single-photon light-emitting diode by strain fields. Appl Phys B, 2016, 122(1), 1

[64]

Höfer B, Zhang J, Wildmann J, et al. Independent tuning of excitonic emission energy and decay time in single semiconductor quantum dots. Appl Phys Lett, 2017, 110(15), 151102

[65]

Zhang J, Wildmann J S, Ding F, et al. High yield and ultrafast sources of electrically triggered entangled-photon pairs based on strain-tunable quantum dots. Nat Commun, 2015, 6, 10067

[66]

Huo Y H, Witek B J, Kumar S, et al. A light-hole exciton in a quantum dot. Nat Phys, 2013, 10(1), 46

[67]

Zhang J, Huo Y, Rastelli A, et al. Single photons on-demand from light-hole excitons in strain-engineered quantum dots. Nano Lett, 2015, 15(1), 422

[68]

Wang J, Gong M, Guo G C, et al. Towards scalable entangled photon sources with self-assembled InAs/GaAs quantum dots. Phys Rev Lett, 2015, 115(6), 067401

[69]

Trotta R, Martín-Sánchez J, Daruka I, et al. Energy-tunable sources of entangled photons: a viable concept for solid-state-based quantum relays. Phys Rev Lett, 2015, 114(15), 150502

[70]

Chen Y, Zadeh I E, Jöns K D, et al. Controlling the exciton energy of a nanowire quantum dot by strain fields. Appl Phys Lett, 2016, 108(18), 182103

[71]

Versteegh M A M, Reimer M E, Jöns K D, et al. Observation of strongly entangled photon pairs from a nanowire quantum dot. Nat Commun, 2014, 5, 5298

[72]

Bulgarini G, Reimer M E, Bavinck M B, et al. Nanowire waveguides launching single photons in a Gaussian mode for ideal fiber coupling. Nano Lett, 2014, 14, 1428

[73]

Davanço M, Rakher M T, Schuh D, et al. A circular dielectric grating for vertical extraction of single quantum dot emission. Appl Phys Lett, 2011, 99(4), 041102

[74]

Liu J, Su R, Wei Y, et al. A solid-state source of strongly entangled photon pairs with high brightness and indistinguishability. Nat Nanotechnol, 2019, 14(6), 586

[75]

Wang H, Hu H, Chung T H, et al. On-demand semiconductor source of entangled photons which simultaneously has high fidelity, efficiency, and indistinguishability. Phys Rev Lett, 2019, 122(11), 113602

[76]

Moczała-Dusanowska M, Dusanowski Ł, Gerhardt S, et al. Strain-tunable single-photon source based on a quantum dot–micropillar system. ACS Photonics, 2019, 6(8), 2025

[77]

Jung H, Gweon D G. Creep characteristics of piezoelectric actuators. Rev Sci Instrum, 2000, 71(4), 1896

[78]

Zopf M, Macha T, Keil R, et al. Frequency feedback for two-photon interference from separate quantum dots. Phys Rev B, 2018, 98(16), 161302

[79]

Chuang S L. Physics of photonic devices. Hoboken, NJ: Wiley, 2009

[80]

Pikus G E. Effect of deformation on the hole energy spectrum of germanium and silicon. Sov Phys-Solid State, 1960, 11502

[81]

Bir G L, Pikus G E. Symmetry and strain-induced effects in semiconductors. New York: Wiley, 1974

[82]

Trotta R, Atkinson P, Plumhof J D, et al. Nanomembrane quantum-light-emitting diodes integrated onto piezoelectric actuators. Adv Mater, 2012, 24(20), 2668

[83]

Kumar S, Trotta R, Zallo E, et al. Strain-induced tuning of the emission wavelength of high quality GaAs/AlGaAs quantum dots in the spectral range of the 87Rb D2 lines. Appl Phys Lett, 2011, 99(16), 161118

[84]

Plumhof J D, Trotta R, Křápek V, et al. Tuning of the valence band mixing of excitons confined in GaAs/AlGaAs quantum dots via piezoelectric-induced anisotropic strain. Phys Rev B, 2013, 87(7), 075311

[85]

Benson O, Santori C, Pelton M, et al. Regulated and entangled photons from a single quantum dot. Phys Rev Lett, 2000, 84(11), 2513

[86]

Ward M B, Dean M C, Stevenson R M, et al. Coherent dynamics of a telecom-wavelength entangled photon source. Nat Commun, 2014, 5(1), 3316

[87]

Santori C, Fattal D, Pelton M, et al. Polarization-correlated photon pairs from a single quantum dot. Phys Rev B, 2002, 66(4), 045308

[88]

Stevenson R M, Thompson R M, Shields A J, et al. Quantum dots as a photon source for passive quantum key encoding. Phys Rev B, 2002, 66(8), 081302

[89]

Bester G. Electronic excitations in nanostructures: an empirical pseudopotential based approach. J Phys: Condens Matter, 2008, 21(2), 023202

[90]

Ding F, Ji H, Chen Y, et al. Stretchable graphene: a close look at fundamental parameters through biaxial straining. Nano Lett, 2010, 10(9), 3453

[91]

Zallo E, Trotta R, Křápek V, et al. Strain-induced active tuning of the coherent tunneling in quantum dot molecules. Phys Rev B, 2014, 89(24), 241303

[92]

Meesala S, Sohn Y I, Pingault B, et al. Strain engineering of the silicon-vacancy center in diamond. Phys Rev B, 2018, 97(20), 205444

[93]

Kiršanskė G, Thyrrestrup H, Daveau R S, et al. Indistinguishable and efficient single photons from a quantum dot in a planar nanobeam waveguide. Phys Rev B, 2017, 96(16), 165306

[94]

Lodahl P. Quantum-dot based photonic quantum networks. Quantum Sci Technol, 2017, 3(1), 013001

[95]

Daveau R S, Balram K C, Pregnolato T, et al. Efficient fiber-coupled single-photon source based on quantum dots in a photonic-crystal waveguide. Optica, 2017, 4(2), 178

[96]

Pan J W, Gasparoni S, Ursin R. Experimental entanglement purification of arbitrary unknown states. Nature, 2003, 423, 417

[97]

Chen L K, Yong H L, Xu P, et al. Experimental nested purification for a linear optical quantum repeater. Nat Photon, 2017, 11(11), 695

[98]

Sheng Y B, Zhou L, Long G L. Hybrid entanglement purification for quantum repeaters. Phys Rev A, 2013, 88(2), 022302

[99]

de Riedmatten H, Marcikic I, Tittel W, et al. Long distance quantum teleportation in a quantum relay configuration. Phys Rev Lett, 2004, 92(4), 047904

[100]

Bennett A J, Unitt D C, See P, et al. Electrical control of the uncertainty in the time of single photon emission events. Phys Rev B, 2005, 72(3), 033316

[101]

Reischle M, Kessler C, Schulz W M, et al. Triggered single-photon emission from electrically excited quantum dots in the red spectral range. Appl Phys Lett, 2010, 97(14), 143513

[102]

Hargart F, Kessler C A, Schwarzbäck T, et al. Electrically driven quantum dot single-photon source at 2 GHz excitation repetition rate with ultra-low emission time jitter. Appl Phys Lett, 2013, 102(1), 011126

[103]

Troncale V, Karlsson K F, Pelucchi E, et al. Control of valence band states in pyramidal quantum dot-in-dot semiconductor heterostructures. Appl Phys Lett, 2007, 91(24), 241909

[104]

Karlsson K F, Dupertuis M A, Oberli D Y, et al. Fine structure of exciton complexes in high-symmetry quantum dots: Effects of symmetry breaking and symmetry elevation. Phys Rev B, 2010, 81(16), 161307

[105]

Vrijen R, Yablonovitch E. A spin-coherent semiconductor photo-detector for quantum communication. Physica E, 2001, 10(4), 569

[106]

Sleiter D, Brinkman W F. Using holes in GaAs as qubits: An estimate of the Rabi frequency in the presence of an external RF field. Phys Rev B, 2006, 74(15), 153312

[107]

Kosaka H, Inagaki T, Rikitake Y, et al. Spin state tomography of optically injected electrons in a semiconductor. Nature, 2009, 457(7230), 702

[108]

L Besombes L, K Kheng K, Martrou D. Exciton and biexciton fine structure in single elongated islands grown on a vicinal surface. Phys Rev Lett, 2000, 85(2), 425

[109]

Belhadj T, Amand T, Kunold A, et al. Impact of heavy hole-light hole coupling on optical selection rules in GaAs quantum dots. Appl Phys Lett, 2010, 97(5), 051111

[110]

Zhou W, Shen H, Pamulapati J, et al. Heavy- and light-hole band crossing in a variable-strain quantum-well heterostructure. Phys Rev B, 1995, 51(8), 5461

[111]

Zhou W, Shen H, J Pamulapati J, et al. Simultaneous blue- and red-shift of light-hole and heavy-hole band in a novel variable-strain quantum well heterostructure. Appl Phys Lett, 1995, 66(5), 607

[112]

Huo Y H, Rastelli A, Schmidt O G. Ultra-small excitonic fine structure splitting in highly symmetric quantum dots on GaAs (001) substrate. Appl Phys Lett, 2013, 102(15), 152105

[113]

Witek B J, Heeres R W, Perinetti U, et al. Measurement of the g-factor tensor in a quantum dot and disentanglement of exciton spins. Phys Rev B, 2011, 84(19), 195305

[114]

Wang X L, Chen L K, W Li W, et al. Experimental ten-photon entanglement. Phys Rev Lett, 2016, 117(21), 210502

[115]

Scarani V, de Riedmatten H, Marcikic I, et al. Four-photon correction in two-photon Bell experiments. Eur Phys J D, 2005, 32(1), 129

[116]

Seidl S, Högele A, Kroner M, et al. Tuning the cross-gap transition energy of a quantum dot by uniaxial stress. Physica E, 2006, 32(1), 14

[117]

Bryant G W, Zieliński M, N Malkova N, et al. Effect of mechanical strain on the optical properties of quantum dots: controlling exciton shape, orientation, and phase with a mechanical strain. Phys Rev Lett, 2010, 105(6), 067404

[118]

Michler P. Quantum dots for quantum information technologies. Springer International Publishing, 2017

[119]

Creative Commons Attribution 4.0 International License. http://creativecommons.org/licenses/by/4.0/.

[120]

Gong M, Zhang W, Guo G C, et al. Exciton polarization, fine-structure splitting, and the asymmetry of quantum dots under uniaxial stress. Phys Rev Lett, 2011, 106(22), 227401

[121]

Singh R, Bester G. Lower bound for the excitonic fine structure splitting in self-assembled quantum dots. Phys Rev Lett, 2010, 104(19), 196803

[122]

Müller M, Bounouar S, Jöns K D, et al. On-demand generation of indistinguishable polarization-entangled photon pairs. Nat Photonics, 2014, 8(3), 224

[123]

Altepeter J B, Jeffrey E R, Kwiat P G. Photonic state tomography. Adv Atom, Mol, Opt Phys, 2015, 52, 105

[124]

James D F V, Kwiat P G, Munro W J, et al. Measurement of qubits. Phys Rev A, 2001, 64(5), 052312

[125]

Dousse A, Suffczyński J, Beveratos A, et al. Ultrabright source of entangled photon pairs. Nature, 2010, 466(7303), 217

[126]

Chen Y, Zopf M, Keil R, et al. Highly-efficient extraction of entangled photons from quantum dots using a broadband optical antenna. Nat Commun, 2018, 9(1), 1

[127]

Kuhn A, Hennrich M, Rempe G. Deterministic single-photon source for distributed quantum networking. Phys Rev Lett, 2002, 89(6), 067901

[128]

Flagg E B, Muller A, Polyakov S V, et al. Interference of single photons from two separate semiconductor quantum dots. Phys Rev Lett, 2010, 104(13), 137401

[129]

Friedler I, Sauvan C, Hugonin J P, et al. Solid-state single photon sources: the nanowire antenna. Opt Express, 2009, 17(4), 2095

[130]

Heindel T, Schneider C, Lermer M, et al. Electrically driven quantum dot-micropillar single photon source with 34% overall efficiency. Appl Phys Lett, 2010, 96(1), 011107

[131]

Reimer M E, Bulgarini G, Akopian N, et al. Bright single-photon sources in bottom-up tailored nanowires. Nat Commun, 2012, 3, 737

[132]

Bulgarini G, D Dalacu D, P J Poole P J, et al. Far field emission profile of pure wurtzite InP nanowires. Appl Phys Lett, 2014, 105(19), 191113

[133]

Gregersen N, Nielsen T R, Claudon J, et al. Controlling the emission profile of a nanowire with a conical taper. Opt Lett, OL, 2008, 33(15), 1693

[134]

Dalacu D, Mnaymneh K, Lapointe J, et al. Ultraclean emission from InAsP quantum dots in defect-free wurtzite InP nanowires. Nano Lett, 2012, 12(11), 5919

[135]

Reimer M E, Bulgarini G, Fognini A, et al. Overcoming power broadening of the quantum dot emission in a pure wurtzite nanowire. Phys Rev B, 2016, 93(19), 195316

[136]

Signorello G, Karg S, Björk M T, et al. Tuning the light emission from GaAs nanowires over 290 meV with uniaxial strain. Nano Lett, 2013, 13(3), 917

[137]

Kremer P E, Dada A C, Kumar P, et al. Strain-tunable quantum dot embedded in a nanowire antenna. Phys Rev B, 2014, 90(20), 201408

[138]

A Politi A, Cryan M J, Rarity J G, et al. Silica-on-silicon waveguide quantum circuits. Science, 2008, 320(5876), 646

[139]

Silverstone J W, Bonneau D, Ohira K, et al. On-chip quantum interference between silicon photon-pair sources. Nat Photonics, 2014, 8(2), 104

[140]

Najafi N, Mower J, Harris N C, et al. On-chip detection of non-classical light by scalable integration of single-photon detectors. Nat Commun, 2015, 6, 5873

[141]

O’Brien J L, Furusawa A, Vučković J. Photonic quantum technologies. Nat Photonics, 2009, 3(12), 687

[142]

Plumhof J D, Křápek V, Ding F, et al. Strain-induced anticrossing of bright exciton levels in single self-assembled GaAs/Al xGa1– xAs and In xGa1– xAs/GaAs quantum dots. Phys Rev B, 2011, 83(12), 121302

[143]

Giesz V, Portalupi S L, Grange T, et al. Cavity-enhanced two-photon interference using remote quantum dot sources. Phys Rev B, 2015, 92(16), 161302

[144]

Thoma A, Schnauber P, Böhm J, et al. Two-photon interference from remote deterministic quantum dot microlenses. Appl Phys Lett, 2017, 110(1), 011104

[145]

Akopian N, Trotta R, Zallo E, et al. An artificial atom locked to natural atoms. ArXiv:13022005 [Cond-Mat, Physics:Physics, Physics:Quant-Ph], 2013

[146]

Prechtel J H, Kuhlmann A V, Houel J, et al. Frequency-stabilized source of single photons from a solid-state qubit. Phys Rev X, 2013, 3(4), 041006

[147]

Metcalfe M, Muller A, Solomon G S, et al. Active feedback of a Fabry-Perot cavity to the emission of a single InAs/GaAs quantum dot. J Opt Soc Am B, 2009, 26(12), 2308

[148]

Brunner K, Abstreiter G, Böhm G, et al. Sharp-line photoluminescence and two-photon absorption of zero-dimensional biexcitons in a GaAs/AlGaAs structure. Phys Rev Lett, 1994, 73(8), 1138

[149]

Bylander J, Robert-Philip I, Abram I. Interference and correlation of two independent photons. Eur Phys J D, 2003, 22(2), 295

[1]

Liu Yumin, Yu Zhongyuan, Yang Hongbo, Huang Yongzhen. Influences of Differently Shaped Quantum Dots on Elastic Strain Field Distributions. J. Semicond., 2005, 26(12): 2355.

[2]

Jun Liu, Jincai Wen, Qian Zhao, Lingling Sun. A novel compact model for on-chip stacked transformers in RF-CMOS technology. J. Semicond., 2013, 34(8): 084006. doi: 10.1088/1674-4926/34/8/084006

[3]

Pengyi Yue, Xiuming Dou, Xiangbin Su, Zhichuan Niu, Baoquan Sun. Room-temperature optically pumped InAs/GaAs quantum dots microdisk lasers on SiO2/Si chip. J. Semicond., 2018, 39(8): 084003. doi: 10.1088/1674-4926/39/8/084003

[4]

Zhong Qinghu, Yi Xuehua. Electron Raman scattering in a cylindrical quantum dot. J. Semicond., 2012, 33(5): 052001. doi: 10.1088/1674-4926/33/5/052001

[5]

A. J. Fotue, N. Issofa, M. Tiotsop, S. C. Kenfack, M. P. Tabue Djemmo, H. Fotsin, L. C. Fai. Electric and magnetic optical polaron in quantum dot——Part 1: strong coupling. J. Semicond., 2015, 36(7): 072001. doi: 10.1088/1674-4926/36/7/072001

[6]

Yin Jiwen, Yu Yifu, Xiao Jinglin. Temperature Dependence of Strong-Coupling Bound Magnetopolaron in a Quantum Dot. J. Semicond., 2006, 27(12): 2123.

[7]

A. Nasr, A. Aly. Theoretical investigation of some parameters into the behavior of quantum dot solar cells. J. Semicond., 2014, 35(12): 124001. doi: 10.1088/1674-4926/35/12/124001

[8]

Liu Wanglai, Xu Bo, Liang Ping, Hu Ying, Sun Hong, Lu Xueqin, Wang Zhanguo. Influence of a tilted cavity on quantum-dot optoelectronic active devices. J. Semicond., 2009, 30(9): 094004. doi: 10.1088/1674-4926/30/9/094004

[9]

Li Weiping, Xiao Jinglin. Influence of Coulomb Potential on the Properties of a Polaron in a Quantum Dot. J. Semicond., 2007, 28(8): 1187.

[10]

Shihua Chen. Magnetopolaron effects on the optical absorptions in a parabolic quantum dot. J. Semicond., 2016, 37(9): 092004. doi: 10.1088/1674-4926/37/9/092004

[11]

P. Christina Lily Jasmine, A. John Peter. Magneto-polaron induced intersubband optical transition in a wide band gap II—VI semiconductor quantum dot. J. Semicond., 2015, 36(3): 032001. doi: 10.1088/1674-4926/36/3/032001

[12]

A. J. Fotue, S. C. Kenfack, N. Issofa, M. Tiotsop, H. Fotsin, E. Mainimo, L. C. Fai. Energy levels of magneto-optical polaron in spherical quantum dot——Part 1: Strong coupling. J. Semicond., 2015, 36(9): 092001. doi: 10.1088/1674-4926/36/9/092001

[13]

Zhang Bin, Yan Zuwei, Zhang Min. Bound polaron in a strained wurtzite GaN/AlxGa1-xN cylindrical quantum dot. J. Semicond., 2011, 32(6): 062003. doi: 10.1088/1674-4926/32/6/062003

[14]

M. Tiotsop, A. J. Fotue, S. C. Kenfack, N. Issofa, A. V. Wirngo, M. P. Tabue Djemmo, H. Fotsin, L. C. Fai. Electro-magnetic weak coupling optical polaron and temperature effect in quantum dot. J. Semicond., 2015, 36(10): 102001. doi: 10.1088/1674-4926/36/10/102001

[15]

D. Lalitha, A. John Peter. Effect of p-d exchange with an itinerant carrier in a GaMnAs quantum dot. J. Semicond., 2013, 34(7): 072001. doi: 10.1088/1674-4926/34/7/072001

[16]

Chen Shihua. Properties of the two- and three-dimensional quantum dot qubit. J. Semicond., 2010, 31(5): 052001. doi: 10.1088/1674-4926/31/5/052001

[17]

Jiwen Yin, Weiping Li, Yifu Yu. Properties of a polaron in a quantum dot:a squeezed-state variational approach. J. Semicond., 2013, 34(1): 012001. doi: 10.1088/1674-4926/34/1/012001

[18]

Chen Zuozi, Lu Haizhou, Lü Rong, . Effect of Electron-Phonon Interaction on NonequilibriumTransport in Quantum Dot Systems. J. Semicond., 2006, 27(S1): 44.

[19]

Xiaosheng Qu, Sisi Zhang, Hongyin Bao, Liling Xiong. The effect of InAs quantum-dot size and interdot distance on GaInP/GaAs/GaInAs/Ge multi-junction tandem solar cells. J. Semicond., 2013, 34(6): 062003. doi: 10.1088/1674-4926/34/6/062003

[20]

Niu Zhichuan, Ni Haiqiao, Fang Zhidan, Gong Zheng, Zhang Shiyong, Wu Donghai, Sun Zheng, Zhao Huan, Peng Hongling, Han Qin, Wu Ronghan. 1.3μm InGaAs/InAs/GaAs Self-Assembled Quantum Dot Laser Diode Grown by Molecular Beam Epitaxy. J. Semicond., 2006, 27(3): 482.

Search

Advanced Search >>

GET CITATION

J Z Yang, M Zopf, F Ding, Strain tunable quantum dot based non-classical photon sources[J]. J. Semicond., 2020, 41(1): 011901. doi: 10.1088/1674-4926/41/1/011901.

Export: BibTex EndNote

Article Metrics

Article views: 489 Times PDF downloads: 106 Times Cited by: 0 Times

History

Manuscript received: 30 September 2019 Manuscript revised: Online: Accepted Manuscript: 13 November 2019 Uncorrected proof: 23 November 2019 Published: 02 January 2020

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误