J. Semicond. > Volume 39 > Issue 10 > Article Number: 104005

FEM thermal analysis of high power GaN-on-diamond HEMTs

Xudong Chen 1, 2, , Wenbo Zhai 1, 2, , Jingwen Zhang 1, 2, 3, , , Renan Bu 2, , Hongxing Wang 2, and Xun Hou 2,

+ Author Affilications + Find other works by these authors

PDF

Turn off MathJax

Abstract: A three-dimensional thermal analysis of GaN HEMTs on diamond substrate is investigated using the finite element method. The diamond substrate thickness, area and shape, transition layer thickness and thermal conductivity of the transition layer are considered and treated appropriately in the numerical simulation. The temperature distribution and heat spreading paths are investigated under different conditions and the results indicate that the existence of the transition layer causes an increase in the channel temperature and the thickness, area and shape of the diamond substrate have certain impacts on the channel temperature too. Channel temperature reduces with increasing diamond substrate thickness and area but with a decreasing trend, which can be explained by the saturation effects of the diamond substrate. The shape of diamond substrate also affects the temperature performance of GaN HEMTs, therefore, to achieve a favorable heat dissipation effect with the settled diamond substrate area, the shape should contain as many isothermal curves as possible when the isothermal gradient is constant. The study of the thermal properties of GaN on diamond substrate is useful for the prediction of heating of high power GaN HEMTs devices and optimal designs of an efficient heat spreader for GaN HEMTs.

Key words: FEMGaN-on-diamond HEMTsself-heatingtemperature distribution

Abstract: A three-dimensional thermal analysis of GaN HEMTs on diamond substrate is investigated using the finite element method. The diamond substrate thickness, area and shape, transition layer thickness and thermal conductivity of the transition layer are considered and treated appropriately in the numerical simulation. The temperature distribution and heat spreading paths are investigated under different conditions and the results indicate that the existence of the transition layer causes an increase in the channel temperature and the thickness, area and shape of the diamond substrate have certain impacts on the channel temperature too. Channel temperature reduces with increasing diamond substrate thickness and area but with a decreasing trend, which can be explained by the saturation effects of the diamond substrate. The shape of diamond substrate also affects the temperature performance of GaN HEMTs, therefore, to achieve a favorable heat dissipation effect with the settled diamond substrate area, the shape should contain as many isothermal curves as possible when the isothermal gradient is constant. The study of the thermal properties of GaN on diamond substrate is useful for the prediction of heating of high power GaN HEMTs devices and optimal designs of an efficient heat spreader for GaN HEMTs.

Key words: FEMGaN-on-diamond HEMTsself-heatingtemperature distribution



References:

[1]

Jimenez J L, Chowdhury U. X-band GaN FET reliability. Proc IEEE IRPS, 2008: 429

[2]

Lee S, Vetury R, Brown J D, et al. Reliability assessment of AlGaN/GaN HEMT technology on SiC for 48 V applications. Proc IEEE 46th Annu Int Rel Phys Symp, 2008: 446

[3]

Singhal S, Roberts J C, Rajagopal P, et al. GaN-on-Si failure mechanisms and reliability improvements. Proc IEEE IRPS, 2006: 95

[4]

Kemerley R T, Wallace H B, Yoder M N. Impact of wide bandgap microwave devices on DoD systems. Proc IEEE, 2002, 90(6): 1059

[5]

Mishra U K, Parikh P, Wu Y F. AlGaN/GaN HEMTs-an overview of device operation and applications. Proc IEEE, 2002, 90(11): 1022

[6]

Sullivan G J, Chen M Y, Higgins J A, et al. High-power 10-GHz operation of AlGaN HFET's on insulating SiC. IEEE Electron Device Lett, 1998, 19(6): 198

[7]

Trew R J. SiC and GaN transistors-is there one winner for microwave power applications. Proc IEEE, 2002, 90(6): 1032

[8]

Menozzi R, Umana-Membreno G A, Nener B D, et al. Temperature-dependent characterization of AlGaN/GaN HEMTs: thermal and source/drain resistances. IEEE Trans Device Mater Rel, 2008, 8(2): 255

[9]

Bar-Cohen A, AlbrechtJ D, Maurer J J. Near-junction thermal mnagement for wide bandgap devices. Proc IEEE CSICS, 2011: 1

[10]

Meneghesso G, Verzellesi G, Danesin F, et al. Reliability of GaN high-electron-mobility transistors: state of the art and perspectives. IEEE Trans. Dev. Mat. Rel., 2008, 8(2): 332

[11]

Altman D, Tyhach M, Mcclymonds J, et al. Analysis and characterization of thermal transport in GaN HEMTs on Diamond substrates. Fourteenth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, 2014: 1199

[12]

Pomeroy J, Bernardoni M, Sarua A, et al. Achieving the best thermal performance for GaN-on-diamond. Proc IEEE Compnd Semicondr Integr Circuit Symp (CSICS), 2013: 1

[13]

Ejeckam F, Francis D, Faili F, et al. S2-T1: GaN-on-diamond: A brief history. Proc IEEE Lester Eastman Conf High Perform. Devices, 2014: 1

[14]

Zhao M, Liu X, Zheng Y, et al. Thermal analysis of AlGaN/GaN high-electron-mobility transistors by infrared microscopy. Physical & Failure Analysis of Integrated Circuits, 2013, 291(12): 1

[15]

Hancock B L, Nazari M, Anderson J, et al. Ultraviolet micro-Raman spectroscopy stress mapping of a 75-mm GaN-on-diamond wafer. Appl Phys Lett, 2016, 108(21): 1467

[16]

Hancock B L, Nazari M, Anderson J, et al. Investigation of stresses in GaN HEMT layers on a diamond substrate using micro-raman spectroscopy. Compound Semiconductor Integrated Circuit Symposium, 2016: 1

[17]

Pomeroy J W, Bernardoni M, Dumka D C, et al. Low thermal resistance GaN-on-diamond transistors characterized by three-dimensional Raman thermography mapping. Appl Phys Lett, 2014, 104(8): 083513

[18]

Sun H, Simon R B, Pomeroy J W, et al. Reducing GaN-on-diamond interfacial thermal resistance for high power transistor applications. Appl Phys Lett, 2015, 106(11): 229

[19]

Calame J P, Myers R E, Wood F N, et al. Simulations of direct-die-attached microchannel coolers for the thermal management of GaN-on-SiC microwave amplifiers. IEEE Trans Compon Pack Technol, 2005, 28(4): 797

[20]

Bertoluzza F, Delmonte N, Menozzi R. Three-dimensional finite-element thermal simulation of GaN-based HEMTs. Microelectron Reliab, 2009, 49(5): 468

[21]

Chu K K, Yurovchak T, Chao P C, et al. Thermal modeling of high power GaN-on-diamond HEMTs fabricated by low-temperature device transfer process. Compound Semiconductor Integrated Circuit Symposium, 2013: 1

[22]

Wang A, Tadjer M J, Calle F. Simulation of thermal management in AlGaN/GaN HEMTs with integrated diamond heat spreaders. Semicond Sci Technol, 2013, 28(5): 055010

[23]

Denu G A, Mirani J H, Fu J, et al. FEM thermal analysis of Cu/diamond/Cu and diamond/SiC heat spreaders. AIP Adv, 2017, 7(3): 035102

[24]

Liu T, Kong Y, Wu L, et al. 3-inch GaN-on-diamond HEMTs with device-first transfer technology. IEEE Electron Device Lett, 2017, 37: 1417

[1]

Jimenez J L, Chowdhury U. X-band GaN FET reliability. Proc IEEE IRPS, 2008: 429

[2]

Lee S, Vetury R, Brown J D, et al. Reliability assessment of AlGaN/GaN HEMT technology on SiC for 48 V applications. Proc IEEE 46th Annu Int Rel Phys Symp, 2008: 446

[3]

Singhal S, Roberts J C, Rajagopal P, et al. GaN-on-Si failure mechanisms and reliability improvements. Proc IEEE IRPS, 2006: 95

[4]

Kemerley R T, Wallace H B, Yoder M N. Impact of wide bandgap microwave devices on DoD systems. Proc IEEE, 2002, 90(6): 1059

[5]

Mishra U K, Parikh P, Wu Y F. AlGaN/GaN HEMTs-an overview of device operation and applications. Proc IEEE, 2002, 90(11): 1022

[6]

Sullivan G J, Chen M Y, Higgins J A, et al. High-power 10-GHz operation of AlGaN HFET's on insulating SiC. IEEE Electron Device Lett, 1998, 19(6): 198

[7]

Trew R J. SiC and GaN transistors-is there one winner for microwave power applications. Proc IEEE, 2002, 90(6): 1032

[8]

Menozzi R, Umana-Membreno G A, Nener B D, et al. Temperature-dependent characterization of AlGaN/GaN HEMTs: thermal and source/drain resistances. IEEE Trans Device Mater Rel, 2008, 8(2): 255

[9]

Bar-Cohen A, AlbrechtJ D, Maurer J J. Near-junction thermal mnagement for wide bandgap devices. Proc IEEE CSICS, 2011: 1

[10]

Meneghesso G, Verzellesi G, Danesin F, et al. Reliability of GaN high-electron-mobility transistors: state of the art and perspectives. IEEE Trans. Dev. Mat. Rel., 2008, 8(2): 332

[11]

Altman D, Tyhach M, Mcclymonds J, et al. Analysis and characterization of thermal transport in GaN HEMTs on Diamond substrates. Fourteenth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, 2014: 1199

[12]

Pomeroy J, Bernardoni M, Sarua A, et al. Achieving the best thermal performance for GaN-on-diamond. Proc IEEE Compnd Semicondr Integr Circuit Symp (CSICS), 2013: 1

[13]

Ejeckam F, Francis D, Faili F, et al. S2-T1: GaN-on-diamond: A brief history. Proc IEEE Lester Eastman Conf High Perform. Devices, 2014: 1

[14]

Zhao M, Liu X, Zheng Y, et al. Thermal analysis of AlGaN/GaN high-electron-mobility transistors by infrared microscopy. Physical & Failure Analysis of Integrated Circuits, 2013, 291(12): 1

[15]

Hancock B L, Nazari M, Anderson J, et al. Ultraviolet micro-Raman spectroscopy stress mapping of a 75-mm GaN-on-diamond wafer. Appl Phys Lett, 2016, 108(21): 1467

[16]

Hancock B L, Nazari M, Anderson J, et al. Investigation of stresses in GaN HEMT layers on a diamond substrate using micro-raman spectroscopy. Compound Semiconductor Integrated Circuit Symposium, 2016: 1

[17]

Pomeroy J W, Bernardoni M, Dumka D C, et al. Low thermal resistance GaN-on-diamond transistors characterized by three-dimensional Raman thermography mapping. Appl Phys Lett, 2014, 104(8): 083513

[18]

Sun H, Simon R B, Pomeroy J W, et al. Reducing GaN-on-diamond interfacial thermal resistance for high power transistor applications. Appl Phys Lett, 2015, 106(11): 229

[19]

Calame J P, Myers R E, Wood F N, et al. Simulations of direct-die-attached microchannel coolers for the thermal management of GaN-on-SiC microwave amplifiers. IEEE Trans Compon Pack Technol, 2005, 28(4): 797

[20]

Bertoluzza F, Delmonte N, Menozzi R. Three-dimensional finite-element thermal simulation of GaN-based HEMTs. Microelectron Reliab, 2009, 49(5): 468

[21]

Chu K K, Yurovchak T, Chao P C, et al. Thermal modeling of high power GaN-on-diamond HEMTs fabricated by low-temperature device transfer process. Compound Semiconductor Integrated Circuit Symposium, 2013: 1

[22]

Wang A, Tadjer M J, Calle F. Simulation of thermal management in AlGaN/GaN HEMTs with integrated diamond heat spreaders. Semicond Sci Technol, 2013, 28(5): 055010

[23]

Denu G A, Mirani J H, Fu J, et al. FEM thermal analysis of Cu/diamond/Cu and diamond/SiC heat spreaders. AIP Adv, 2017, 7(3): 035102

[24]

Liu T, Kong Y, Wu L, et al. 3-inch GaN-on-diamond HEMTs with device-first transfer technology. IEEE Electron Device Lett, 2017, 37: 1417

[1]

Yamin Zhang, Shiwei Feng, Hui Zhu, Xueqin Gong, Bing Deng, Lin Ma. Self-heating and traps effects on the drain transient response of AlGaN/GaN HEMTs. J. Semicond., 2014, 35(10): 104003. doi: 10.1088/1674-4926/35/10/104003

[2]

Yang Zhenyu, Wang Mingxiang, Wang Huaisheng. Finite Element Analysis of Temperature Distribution of Polysilicon TFTsUnder Self-Heating Stress. J. Semicond., 2008, 29(5): 954.

[3]

Lü Hongliang, Zhang Yimen, Zhang Yuming, Che Yong, Wang Yuehu. Influence of the Trapping Effect on Temperature Characteristics in 4H-SiC MESFETs. J. Semicond., 2008, 29(2): 334.

[4]

S. Das, A. K. Panda, G. N. Dash. Characterization of electrical properties of AlGaN/GaN interface using coupled Schrödinger and Poisson equation. J. Semicond., 2012, 33(11): 113001. doi: 10.1088/1674-4926/33/11/113001

[5]

Yang Yintang, Leng Peng, Dong Gang, Chai Changchun. RLC Interconnect Delay with Temperature Distribution Effects. J. Semicond., 2008, 29(9): 1843.

[6]

Chen Zhaohui, Liu Yong, Liu Sheng. Comparison of the copper and gold wire bonding processes for LED packaging. J. Semicond., 2011, 32(2): 024011. doi: 10.1088/1674-4926/32/2/024011

[7]

Deng Wanling, Zheng Xueren. Modeling of self-heating effects in polycrystalline silicon thin film transistors. J. Semicond., 2009, 30(7): 074002. doi: 10.1088/1674-4926/30/7/074002

[8]

Zhang Qunshe, Chen Zhiming, Li Liuchen, Yang Feng, Pu Hongbin, Feng Xianfeng. Effects of the Heat Transfer Through Powder Source on the Silicon Carbide Crystal Growth by PVT. J. Semicond., 2007, 28(1): 60.

[9]

Longxiang Yin, Gang Du, Xiaoyan Liu. Impact of ambient temperature on the self-heating effects in FinFETs. J. Semicond., 2018, 39(9): 094011. doi: 10.1088/1674-4926/39/9/094011

[10]

Liyuan Yang, Shan Ai, Yonghe Chen, Mengyi Cao, Kai Zhang, Xiaohua Ma, Yue Hao. A self-heating study on multi-finger AlGaN/GaN high electron mobility transistors. J. Semicond., 2013, 34(7): 074005. doi: 10.1088/1674-4926/34/7/074005

[11]

Li Bin, Liu Hongxia, Li Jin, Yuan Bo, Cao Lei. Numerical analysis of the self-heating effect in SGOI with a double step buried oxide. J. Semicond., 2011, 32(3): 034001. doi: 10.1088/1674-4926/32/3/034001

[12]

Yan Zhang, Gang Dong, Yintang Yang, Ning Wang, Yaoshun Ding, Xiaoxian Liu, Fengjuan Wang. A novel interconnect optimal buffer insertion model considering the self-heating effect. J. Semicond., 2013, 34(11): 115004. doi: 10.1088/1674-4926/34/11/115004

[13]

Changsi Wang, Yuehang Xu, Zhang Wen, Zhikai Chen, Ruimin Xu. An improved temperature-dependent large signal model of microwave GaN HEMTs. J. Semicond., 2016, 37(7): 074006. doi: 10.1088/1674-4926/37/7/074006

[14]

Li Zhiming, Xu Shengrui, Zhang Jincheng, Chang Yongming, Ni Jingyu, Zhou Xiaowei, Hao Yue. Finite element analysis of the temperature field in a vertical MOCVD reactor by induction heating. J. Semicond., 2009, 30(11): 113004. doi: 10.1088/1674-4926/30/11/113004

[15]

Wang Jianhui, Wang Xinhua, Pang Lei, Chen Xiaojuan, Jin Zhi, Liu Xinyu. Effect of varying layouts on the gate temperature for multi-finger AlGaN/GaN HEMTs. J. Semicond., 2012, 33(9): 094004. doi: 10.1088/1674-4926/33/9/094004

[16]

Zhang Guangchen, Feng Shiwei, Li Jingwan, Zhao Yan, Guo Chunsheng. Determination of channel temperature for AlGaN/GaN HEMTs by high spectral resolution micro-Raman spectroscopy. J. Semicond., 2012, 33(4): 044003. doi: 10.1088/1674-4926/33/4/044003

[17]

Wang Chong, Zhang Jinfeng, , Yang Yan, Hao Yue, Feng Qian. Temperature Characteristics of AlGaN/GaN HEMTs Using C-Vand TLM for Evaluating Temperatures. J. Semicond., 2006, 27(5): 864.

[18]

Liang Shuang, Lu Yanwu. Strain Distribution and Piezoelectric Effect in GaN/AlN Quantum Dots. J. Semicond., 2007, 28(1): 42.

[19]

Tang Junxiong, Tang Minghua, Yang Feng, Zhang Junjie, Zhou Yichun, Zheng Xuejun. A Temperature-Dependent Model for Threshold Voltage and Potential Distribution of Fully Depleted SOI MOSFETs. J. Semicond., 2008, 29(1): 45.

[20]

Zhu Yangjun, Miao Qinghai, Zhang Xinghua, Lu Shuojin. Verification of the Excessive Thermotaxis Effect of Low Current Based on Actual Junction Temperature Distribution. J. Semicond., 2007, 28(7): 1112.

Search

Advanced Search >>

GET CITATION

X D Chen, W B Zhai, J W Zhang, R N Bu, H X Wang, X Hou, FEM thermal analysis of high power GaN-on-diamond HEMTs[J]. J. Semicond., 2018, 39(10): 104005. doi: 10.1088/1674-4926/39/10/104005.

Export: BibTex EndNote

Article Metrics

Article views: 1017 Times PDF downloads: 41 Times Cited by: 0 Times

History

Manuscript received: 28 February 2018 Manuscript revised: 23 April 2018 Online: Uncorrected proof: 05 July 2018 Published: 09 October 2018

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误