INVITED REVIEW PAPERS

High-speed photodetectors in optical communication system

Zeping Zhao1, 2, Jianguo Liu1, 2, , Yu Liu1, 2 and Ninghua Zhu1, 2

+ Author Affiliations

 Corresponding author: Jianguo Liu, Email: jgliu@semi.ac.cn

PDF

Abstract: This paper presents a review and discussion for high-speed photodetectors and their applications on optical communications and microwave photonics. A detailed and comprehensive demonstration of high-speed photodetectors from development history, research hotspots to packaging technologies is provided to the best of our knowledge. A few typical applications based on photodetectors are also illustrated, such as free-space optical communications, radio over fiber and millimeter terahertz signal generation systems.

Key words: high-speed photodetectorsPIN photodetectorspackagingintegration



[1]
Kawanishi S. Ultrahigh-speed optical time-division-multiplexed transmission technology based on optical signal processing. IEEE J Quantum Electron, 1998, 34(11): 2064 doi: 10.1109/3.726595
[2]
Cai J X, Cai Y, Davidson C, et al. Transmission of 96 × 100 G pre-filtered PDM–RZ–QPSK channels with 300% spectral efficiency over 10 608 km and 400% spectral efficiency over 4,368 km. National Fiber Optic Engineers Conference, 2010: PDPB10
[3]
Qian D, Huang M F, Ip E, et al. High capacity/spectral efficiency 101.7-Tb/s WDM transmission using PDM-128QAM-OFDM over 165-km SSMF within C-and L-bands. J Lightw Technol, 2012, 30(10): 1540 doi: 10.1109/JLT.2012.2189096
[4]
Kaneda N, Pfau T, Zhang H, et al. Field demonstration of 100-Gb/s real-time coherent optical OFDM detection. The European Conference on Optical Communication, 2014: 1
[5]
Zhou X, Zhong K, Huo J, et al. 112-Gbit/s PDM-PAM4 transmission over 80-km SMF using digital coherent detection without optical amplifier. International Symposium on Communication Systems, Networks and Digital Signal Processing, 2016: 1
[6]
Campbell J C. Recent advances in telecommunications avalanche photodiodes. J Lightw Technol, 2007, 25(1): 109 doi: 10.1109/JLT.2006.888481
[7]
You A H, Tan S L, Lim T L, et al. Multiplication gain and excess noise factor in double heterojunction avalanche photodiodes. IEEE International Conference on Semiconductor Electronics, 2008: 259
[8]
Lei W, Guo F M, Lu W, et al. Based simulation of high gain and low breakdown voltage InGaAs/InP avalanche photodiode. International Conference on Numerical Simulation of Optoelectronic Devices, 2008: 37
[9]
Kharraz O, Forsyth D. Performance comparisons between PIN and APD photodetectors for use in optical communication systems. Optik - Int J Light Electron Opt, 2013, 124(13):1493 doi: 10.1016/j.ijleo.2012.04.008
[10]
Mawatari H, Fukuda M, Kato K, et al. Reliability of planar waveguide photodiodes for optical subscriber systems. J Lightw Technol, 1998, 16(12): 2428 doi: 10.1109/50.736629
[11]
Shimizu N, Miyamoto Y, Hirano A, et al. RF saturation mechanism of InP/InGaAs uni-travelling-carrier photodiode. Electron Lett, 2000, 36: 750 doi: 10.1049/el:20000555
[12]
Giboney K, Nagarajan R, Reynolds T, et al. Traveling-wave photodetectors with 172-GHz and 76-GHz bandwidth-efficiency product. IEEE Photon Technol Lett, 1995, 7: 412 doi: 10.1109/68.376819
[13]
Giboney K S, Rodwell M J W, Bowers J E. Traveling-wave photodetector theory. IEEE Trans Microwave Theory Tech, 1997, 45: 1310 doi: 10.1109/22.618429
[14]
Gimlett J L. Low-noise 8 GHz PIN/FET optical receiver. Electron Lett, 1987, 23(6): 281 doi: 10.1049/el:19870205
[15]
Gimlett J L. A new low noise 16 GHz PIN/HEMT optical receiver. Opt Commun, 1988, 12: 13
[16]
Violas M A R. 10 GHz bandwidth low-noise optical receiver using discrete commercial devices. Electron Lett, 1990, 26 (1): 35 doi: 10.1049/el:19900023
[17]
Ohkawna. 20 GHz bandwidth low-noise HEMT preamplifier for optical receivers. Electron Lett, 1988, 24: 1061 doi: 10.1049/el:19880719
[18]
Bowers J E, Burrus C A. High-speed zero-bias waveguide photodetectors. Electron Lett, 1986, 22: 905 doi: 10.1049/el:19860617
[19]
Kato K, Hata S, Kozen A, et al. High-efficiency waveguide InGaAs p–i–n photodiode with bandwidth of greater than 40 GHz. OFC’91, 1991
[20]
Kato K, Hata S, Kozen A, et al. Highly efficient 40 GHz waveguide InGaAs p–i–n photodiode employing multimode waveguide structure. IEEE Photon Technol Lett, 1991, 3: 820 doi: 10.1109/68.84505
[21]
Kato K, Hata S, Kawano K, et al. A highefficiency 50 GHz InGaAs multimode waveguide photodetector. IEEE J Quantum Electron, 1992, 28: 2728 doi: 10.1109/3.166466
[22]
Kato K, Kozen A, Muramoto Y, et al. 110-GHz, 50% efficiency mushroom-mesa waveguide p-i-n photodiode for a 1.55-mm wavelength. IEEE Photon Technol Lett, 1994, 6: 719 doi: 10.1109/68.300173
[23]
Nagatsuma T. Progress in instrumentation and measurement toward millimeter-wave photonics. Tech Dig Int Topical Meeting Microwave Photonics, 1999: 91
[24]
Fukuchi K, Kasamatsu T, Morie M, et al. 10.92-Tb/s (273 × 40-Gb/s) triple-band/ ultra-dense WDM optical repeatered transmission experiment. Tech Dig Optical Fiber Communication Conf, 2001: PD24
[25]
Ishibashi T, Kodama S, Shimizu N, et al. High-speed response of uni-traveling-carrier photodiodes. Jpn J Appl Phys, 1997, 36(10): 6263
[26]
Ito H, Furuta T, Kodama S, et al. InP/InGaAs uni-travelling-carrier photodiode with 220 GHz bandwidth. Electron Lett, 1999, 35(18): 1556 doi: 10.1049/el:19991043
[27]
Ito H, Furuta T, Kodama S, et al. InP/InGaAs uni-travelling-carrier photodiode with a 310 GHz bandwidth. Electron Lett, 2000, 36: 1809 doi: 10.1049/el:20001274
[28]
Muramoto Y, Hirota Y, Yoshino K, et al. Uni-travelling-carrier photodiode module with bandwidth of 80 GHz. Electron Lett, 2003, 39(39): 1851
[29]
Ito H, Nagatsuma T, Hirata A, et al. High-power photonic millimeter-wave generation at 100GHz using matching- circuit-integrated uni-travelling-carrier photodiodes. Proc Inst Elect Eng Optoelectron, 2003, 150: 138 doi: 10.1049/ip-opt:20030384
[30]
Wu Y S, Shi J W, Chiu P H, et al. High-performance dual-step evanescently coupled uni-traveling-carrier photodiodes. IEEE Photonics Technol Lett, 2007, 19(20): 1682 doi: 10.1109/LPT.2007.905185
[31]
Shishikura M, Nakamura H, Hanatani S, et al. An InAlAs/InGaAs superlattice avalanche photodiode with a waveguide structure. OEC’94, 1994
[32]
Cohen-Jonathan C, Giraudet L, Bonzo A, et al. Waveguide AllnAs avalanche photodiode with a gain-bandwidth product over 160 GHz. Electron Lett, 1997, 33: 1492 doi: 10.1049/el:19970988
[33]
Nakata T, Takeuchi T, Makita K, et al. High-speed and highsensitivity waveguide InAlAs avalanche photodiode for 10–40 Gb/s receivers. Proc Laser Electro-Optical Soc, 2001: ThN3
[34]
Kinsey G S, Campbell J C, Dentai A G. Waveguide avalanche photodiode operating at 1.55 _x0016_m with a gain-bandwidth product of 320 GHz. IEEE Photonics Tech Lett, 2001, 13: 842 doi: 10.1109/68.935822
[35]
Demiguel S, Li N, Li X, et al. Very high-responsivity evanescently-coupled photodiodes integrating a short planar multimode waveguide for high-speed applications. IEEE Photon Technol Lett, 2003, 15: 1761 doi: 10.1109/LPT.2003.819724
[36]
Tabasky M J, Chirravuri J, Choudhury A N M M, et al. Four-channel hybrid receiver using a silicon substrate for packaging. Proc SPIE, 1992, 1582: 152 doi: 10.1117/12.135013
[37]
Fukashiro Y, Kaneko S, Oishi A, et al. 800 Mbit/s/ch-10 channel fully-integrated low-skew optical modules for optical subsystem interconnections. Lasers and Electro-Optics Society Meeting, 1996: 67
[38]
DoiY, Ishii M, Kamei S, et al. Flat and high responsivity CWDM photoreceiver using silica-based AWG with multimode output waveguides. Electron Lett, 2003, 39(22): 1603 doi: 10.1049/el:20031010
[39]
Rouvalis E, Müller P, Trommer D, et al. A 1 × 4 MMI-integrated high-power waveguide photodetector. International Conference on Indium Phosphide and Related Materials, 2013: 1
[40]
Jiang C, Krozer V, Bach H G, et al. Broadband packaging of photodetectors for 100 Gb/s ethernet applications. IEEE Trans Compon Pack Manuf Technolo, 2013, 3(3): 422 doi: 10.1109/TCPMT.2012.2236149
[41]
Runge P, Zhou G, Ganzer F, et al. Waveguide integrated InP-based photodetector for 100Gbaud applications operating at wavelengths of 1310 nm and 1550 nm. European Conference on Optical Communication (ECOC), 2015: 1
[42]
Beling A, Steffan A G, Rouvalis E, et al. High-power and high-linearity photodetector modules for microwave photonic applications. J Lightw Technol, 2014, 32(20): 3810 doi: 10.1109/JLT.2014.2310252
[43]
Zhou G, Runge P, Keyvaninia S, et al. high-power inp-based waveguide integrated modified uni-traveling-carrier photodiodes. J Lightw Technol, 2017, 4(35): 717
[44]
Aruga H, Mochizuki K, Itamoto H, et al. Four-channel 25 Gbps optical receiver for 100 Gbps ethernet with built-in demultiplexer optics. 36th European Conference and Exhibition on Optical Communication (ECOC), 2010: 1
[45]
Baek Y, Han Y T, Lee C W, et al. Optical components for 100G ethernet transceivers. Opto-Electronics and Communications Conference, 2012: 218
[46]
DoiY, Oguma M, Yoshimatsu T, et al. Compact high-responsivity receiver optical subassembly with a multimode-output-arrayed waveguide grating for 100-Gb/s ethernet. J Lightw Technol, 2015, 33(15): 3286 doi: 10.1109/JLT.2015.2427367
[47]
Zhao Z, Liu Y, Zhang Z, et al. 1.5 μm, 8 × 12.5 Gb/s of hybrid-integrated TOSA with isolators and ROSA for 100 GbE application. Chin Opt Lett, 2016, 14: 120603 doi: 10.3788/COL
[48]
Nada M, Muramoto Y, Yokohama H, et al. High-sensitivity 25 Gbit/s avalanche photodiode receiver sub-assembly for 40-km transmission. Electron Lett, 2012, 48: 777 doi: 10.1049/el.2012.1081
[49]
Caillaud C, Chanclou P, Blache F, et al. High sensitivity 40 Gbit/s preamplified SOA-PIN/TIA receiver module for high speed PON. European Conference on Optical Communication, 2014: 1
[50]
Anagnosti M, Caillaud C, Glastre G, et al. High performance monolithically integrated SOA-UTC photoreceiver for 100Gbit/s applications. International Conference on Indium Phosphide and Related Materials, 2014: 1
[51]
Caillaud C, Glastre G, Lelarge F, et al. Monolithic integration of a semiconductor optical amplifier and a high speed photodiode with low polarization dependence loss. IEEE Photon Tech Lett, 2012, 24: 897 doi: 10.1109/LPT.2012.2190275
[52]
Caillaud C, Chanclou P, Blache F, et al. High sensitivity 40 Gbit/s preamplified SOA-PIN/TIA receiver module for high speed PON. Eur Conf Exhib Opt Commun, Cannes, France, 2014: Tu3.2.3
[53]
Caillaud C, Chanclou P, Blache F, et al. Integrated SOA-PIN detector for high-speed short reach applications. J Lightw Technol, 2015, 33(8): 1596 doi: 10.1109/JLT.2015.2389533
[54]
Krems T, Haydl W, Massler H, et al. Millimeter-wave performance of chip interconnections using wire bonding and flip chip. Proc IEEE MTT-S Int Microw Symp Dig, San Francisco, CA, 1996: 247
[55]
Alimenti F, Mezzanotte P, Roselli L, et al. Modeling and characterization of the bonding-wire interconnection. IEEE Trans Microw Theory Tech, 2001, 49: 142 doi: 10.1109/22.899975
[56]
Lim L, Kwon D, Rieh J S, et al. RF characterization and modeling of various wire bond transitions. IEEE Trans Adv Packag, 2005, 28: 772 doi: 10.1109/TADVP.2005.853554
[57]
Jentzsch A, Heinrich W. Theory and measurements of flip-chip interconnects for frequencies up to 100 GHz. IEEE Trans Microw Theory Tech, 2001, 49: 871 doi: 10.1109/22.920143
[58]
Tessmann A, Riessle M, Kudszus S, et al. A flip-chip packaged coplanar 94 GHz amplifier module with efficient suppression of parasitic substrate effects. IEEE Microw Wireless Compon Lett, 2004, 14: 145 doi: 10.1109/LMWC.2004.827115
[59]
Sakai K, Kawano M, Aruga H, et al. Photodiode packaging technique using ball lens and offset parabolic mirror. J Lightw Technol, 2009, 27(17): 3874 doi: 10.1109/JLT.2009.2020068
[60]
DoiY, Oguma M, Ito M, et al. Compact ROSA for 100-Gb/s (4 × 25 Gb/s) ethernet with a PLC-based AWG demultiplexer. National Fiber Optic Engineers Conference, 2013: NW1J.5
[61]
Lee J K, Kang S K, Huh J Y, et al. Highly alignment tolerant 4 × 25 Gb/s ROSA module for 100G ethernet optical transceiver. 39th European Conference and Exhibition on Optical Communication, 2013: 1
[62]
Isaac B, Song B, Xia X, et al. Hybrid integration of UTC-PDs on silicon photonics. CLEO: Science and Innovations, 2017: SM4O.1
Fig. 1.  (Color online) Schematic view of the SOA-PIN/TIA ROSA module[53].

Fig. 2.  Structure of a PD module using a catadioptric system[59].

Fig. 3.  (Color online) Schematic configuration of AWG[60].

Fig. 4.  (Color online) Schematic of the optical DMUX block[61].

Fig. 5.  (Color online) A coupling approach using vertical grating[62].

Table 1.   The status of PD array modules.

Year Photograph of the modules Performance Corporation Citation
2010 25 Gb/s × 4 channel Mitsubishi Corporation in Japan Ref. [44]
2012 25 Gb/s × 4 channel Electronics and Telecommunications Research Institute Ref. [45]
2015 25 Gb/s × 4 channel NTT Corporation in Japan Ref. [46]
2016 12.5 Gb/s × 8 channel Institute of Semiconductors in China Ref. [47]
DownLoad: CSV
[1]
Kawanishi S. Ultrahigh-speed optical time-division-multiplexed transmission technology based on optical signal processing. IEEE J Quantum Electron, 1998, 34(11): 2064 doi: 10.1109/3.726595
[2]
Cai J X, Cai Y, Davidson C, et al. Transmission of 96 × 100 G pre-filtered PDM–RZ–QPSK channels with 300% spectral efficiency over 10 608 km and 400% spectral efficiency over 4,368 km. National Fiber Optic Engineers Conference, 2010: PDPB10
[3]
Qian D, Huang M F, Ip E, et al. High capacity/spectral efficiency 101.7-Tb/s WDM transmission using PDM-128QAM-OFDM over 165-km SSMF within C-and L-bands. J Lightw Technol, 2012, 30(10): 1540 doi: 10.1109/JLT.2012.2189096
[4]
Kaneda N, Pfau T, Zhang H, et al. Field demonstration of 100-Gb/s real-time coherent optical OFDM detection. The European Conference on Optical Communication, 2014: 1
[5]
Zhou X, Zhong K, Huo J, et al. 112-Gbit/s PDM-PAM4 transmission over 80-km SMF using digital coherent detection without optical amplifier. International Symposium on Communication Systems, Networks and Digital Signal Processing, 2016: 1
[6]
Campbell J C. Recent advances in telecommunications avalanche photodiodes. J Lightw Technol, 2007, 25(1): 109 doi: 10.1109/JLT.2006.888481
[7]
You A H, Tan S L, Lim T L, et al. Multiplication gain and excess noise factor in double heterojunction avalanche photodiodes. IEEE International Conference on Semiconductor Electronics, 2008: 259
[8]
Lei W, Guo F M, Lu W, et al. Based simulation of high gain and low breakdown voltage InGaAs/InP avalanche photodiode. International Conference on Numerical Simulation of Optoelectronic Devices, 2008: 37
[9]
Kharraz O, Forsyth D. Performance comparisons between PIN and APD photodetectors for use in optical communication systems. Optik - Int J Light Electron Opt, 2013, 124(13):1493 doi: 10.1016/j.ijleo.2012.04.008
[10]
Mawatari H, Fukuda M, Kato K, et al. Reliability of planar waveguide photodiodes for optical subscriber systems. J Lightw Technol, 1998, 16(12): 2428 doi: 10.1109/50.736629
[11]
Shimizu N, Miyamoto Y, Hirano A, et al. RF saturation mechanism of InP/InGaAs uni-travelling-carrier photodiode. Electron Lett, 2000, 36: 750 doi: 10.1049/el:20000555
[12]
Giboney K, Nagarajan R, Reynolds T, et al. Traveling-wave photodetectors with 172-GHz and 76-GHz bandwidth-efficiency product. IEEE Photon Technol Lett, 1995, 7: 412 doi: 10.1109/68.376819
[13]
Giboney K S, Rodwell M J W, Bowers J E. Traveling-wave photodetector theory. IEEE Trans Microwave Theory Tech, 1997, 45: 1310 doi: 10.1109/22.618429
[14]
Gimlett J L. Low-noise 8 GHz PIN/FET optical receiver. Electron Lett, 1987, 23(6): 281 doi: 10.1049/el:19870205
[15]
Gimlett J L. A new low noise 16 GHz PIN/HEMT optical receiver. Opt Commun, 1988, 12: 13
[16]
Violas M A R. 10 GHz bandwidth low-noise optical receiver using discrete commercial devices. Electron Lett, 1990, 26 (1): 35 doi: 10.1049/el:19900023
[17]
Ohkawna. 20 GHz bandwidth low-noise HEMT preamplifier for optical receivers. Electron Lett, 1988, 24: 1061 doi: 10.1049/el:19880719
[18]
Bowers J E, Burrus C A. High-speed zero-bias waveguide photodetectors. Electron Lett, 1986, 22: 905 doi: 10.1049/el:19860617
[19]
Kato K, Hata S, Kozen A, et al. High-efficiency waveguide InGaAs p–i–n photodiode with bandwidth of greater than 40 GHz. OFC’91, 1991
[20]
Kato K, Hata S, Kozen A, et al. Highly efficient 40 GHz waveguide InGaAs p–i–n photodiode employing multimode waveguide structure. IEEE Photon Technol Lett, 1991, 3: 820 doi: 10.1109/68.84505
[21]
Kato K, Hata S, Kawano K, et al. A highefficiency 50 GHz InGaAs multimode waveguide photodetector. IEEE J Quantum Electron, 1992, 28: 2728 doi: 10.1109/3.166466
[22]
Kato K, Kozen A, Muramoto Y, et al. 110-GHz, 50% efficiency mushroom-mesa waveguide p-i-n photodiode for a 1.55-mm wavelength. IEEE Photon Technol Lett, 1994, 6: 719 doi: 10.1109/68.300173
[23]
Nagatsuma T. Progress in instrumentation and measurement toward millimeter-wave photonics. Tech Dig Int Topical Meeting Microwave Photonics, 1999: 91
[24]
Fukuchi K, Kasamatsu T, Morie M, et al. 10.92-Tb/s (273 × 40-Gb/s) triple-band/ ultra-dense WDM optical repeatered transmission experiment. Tech Dig Optical Fiber Communication Conf, 2001: PD24
[25]
Ishibashi T, Kodama S, Shimizu N, et al. High-speed response of uni-traveling-carrier photodiodes. Jpn J Appl Phys, 1997, 36(10): 6263
[26]
Ito H, Furuta T, Kodama S, et al. InP/InGaAs uni-travelling-carrier photodiode with 220 GHz bandwidth. Electron Lett, 1999, 35(18): 1556 doi: 10.1049/el:19991043
[27]
Ito H, Furuta T, Kodama S, et al. InP/InGaAs uni-travelling-carrier photodiode with a 310 GHz bandwidth. Electron Lett, 2000, 36: 1809 doi: 10.1049/el:20001274
[28]
Muramoto Y, Hirota Y, Yoshino K, et al. Uni-travelling-carrier photodiode module with bandwidth of 80 GHz. Electron Lett, 2003, 39(39): 1851
[29]
Ito H, Nagatsuma T, Hirata A, et al. High-power photonic millimeter-wave generation at 100GHz using matching- circuit-integrated uni-travelling-carrier photodiodes. Proc Inst Elect Eng Optoelectron, 2003, 150: 138 doi: 10.1049/ip-opt:20030384
[30]
Wu Y S, Shi J W, Chiu P H, et al. High-performance dual-step evanescently coupled uni-traveling-carrier photodiodes. IEEE Photonics Technol Lett, 2007, 19(20): 1682 doi: 10.1109/LPT.2007.905185
[31]
Shishikura M, Nakamura H, Hanatani S, et al. An InAlAs/InGaAs superlattice avalanche photodiode with a waveguide structure. OEC’94, 1994
[32]
Cohen-Jonathan C, Giraudet L, Bonzo A, et al. Waveguide AllnAs avalanche photodiode with a gain-bandwidth product over 160 GHz. Electron Lett, 1997, 33: 1492 doi: 10.1049/el:19970988
[33]
Nakata T, Takeuchi T, Makita K, et al. High-speed and highsensitivity waveguide InAlAs avalanche photodiode for 10–40 Gb/s receivers. Proc Laser Electro-Optical Soc, 2001: ThN3
[34]
Kinsey G S, Campbell J C, Dentai A G. Waveguide avalanche photodiode operating at 1.55 _x0016_m with a gain-bandwidth product of 320 GHz. IEEE Photonics Tech Lett, 2001, 13: 842 doi: 10.1109/68.935822
[35]
Demiguel S, Li N, Li X, et al. Very high-responsivity evanescently-coupled photodiodes integrating a short planar multimode waveguide for high-speed applications. IEEE Photon Technol Lett, 2003, 15: 1761 doi: 10.1109/LPT.2003.819724
[36]
Tabasky M J, Chirravuri J, Choudhury A N M M, et al. Four-channel hybrid receiver using a silicon substrate for packaging. Proc SPIE, 1992, 1582: 152 doi: 10.1117/12.135013
[37]
Fukashiro Y, Kaneko S, Oishi A, et al. 800 Mbit/s/ch-10 channel fully-integrated low-skew optical modules for optical subsystem interconnections. Lasers and Electro-Optics Society Meeting, 1996: 67
[38]
DoiY, Ishii M, Kamei S, et al. Flat and high responsivity CWDM photoreceiver using silica-based AWG with multimode output waveguides. Electron Lett, 2003, 39(22): 1603 doi: 10.1049/el:20031010
[39]
Rouvalis E, Müller P, Trommer D, et al. A 1 × 4 MMI-integrated high-power waveguide photodetector. International Conference on Indium Phosphide and Related Materials, 2013: 1
[40]
Jiang C, Krozer V, Bach H G, et al. Broadband packaging of photodetectors for 100 Gb/s ethernet applications. IEEE Trans Compon Pack Manuf Technolo, 2013, 3(3): 422 doi: 10.1109/TCPMT.2012.2236149
[41]
Runge P, Zhou G, Ganzer F, et al. Waveguide integrated InP-based photodetector for 100Gbaud applications operating at wavelengths of 1310 nm and 1550 nm. European Conference on Optical Communication (ECOC), 2015: 1
[42]
Beling A, Steffan A G, Rouvalis E, et al. High-power and high-linearity photodetector modules for microwave photonic applications. J Lightw Technol, 2014, 32(20): 3810 doi: 10.1109/JLT.2014.2310252
[43]
Zhou G, Runge P, Keyvaninia S, et al. high-power inp-based waveguide integrated modified uni-traveling-carrier photodiodes. J Lightw Technol, 2017, 4(35): 717
[44]
Aruga H, Mochizuki K, Itamoto H, et al. Four-channel 25 Gbps optical receiver for 100 Gbps ethernet with built-in demultiplexer optics. 36th European Conference and Exhibition on Optical Communication (ECOC), 2010: 1
[45]
Baek Y, Han Y T, Lee C W, et al. Optical components for 100G ethernet transceivers. Opto-Electronics and Communications Conference, 2012: 218
[46]
DoiY, Oguma M, Yoshimatsu T, et al. Compact high-responsivity receiver optical subassembly with a multimode-output-arrayed waveguide grating for 100-Gb/s ethernet. J Lightw Technol, 2015, 33(15): 3286 doi: 10.1109/JLT.2015.2427367
[47]
Zhao Z, Liu Y, Zhang Z, et al. 1.5 μm, 8 × 12.5 Gb/s of hybrid-integrated TOSA with isolators and ROSA for 100 GbE application. Chin Opt Lett, 2016, 14: 120603 doi: 10.3788/COL
[48]
Nada M, Muramoto Y, Yokohama H, et al. High-sensitivity 25 Gbit/s avalanche photodiode receiver sub-assembly for 40-km transmission. Electron Lett, 2012, 48: 777 doi: 10.1049/el.2012.1081
[49]
Caillaud C, Chanclou P, Blache F, et al. High sensitivity 40 Gbit/s preamplified SOA-PIN/TIA receiver module for high speed PON. European Conference on Optical Communication, 2014: 1
[50]
Anagnosti M, Caillaud C, Glastre G, et al. High performance monolithically integrated SOA-UTC photoreceiver for 100Gbit/s applications. International Conference on Indium Phosphide and Related Materials, 2014: 1
[51]
Caillaud C, Glastre G, Lelarge F, et al. Monolithic integration of a semiconductor optical amplifier and a high speed photodiode with low polarization dependence loss. IEEE Photon Tech Lett, 2012, 24: 897 doi: 10.1109/LPT.2012.2190275
[52]
Caillaud C, Chanclou P, Blache F, et al. High sensitivity 40 Gbit/s preamplified SOA-PIN/TIA receiver module for high speed PON. Eur Conf Exhib Opt Commun, Cannes, France, 2014: Tu3.2.3
[53]
Caillaud C, Chanclou P, Blache F, et al. Integrated SOA-PIN detector for high-speed short reach applications. J Lightw Technol, 2015, 33(8): 1596 doi: 10.1109/JLT.2015.2389533
[54]
Krems T, Haydl W, Massler H, et al. Millimeter-wave performance of chip interconnections using wire bonding and flip chip. Proc IEEE MTT-S Int Microw Symp Dig, San Francisco, CA, 1996: 247
[55]
Alimenti F, Mezzanotte P, Roselli L, et al. Modeling and characterization of the bonding-wire interconnection. IEEE Trans Microw Theory Tech, 2001, 49: 142 doi: 10.1109/22.899975
[56]
Lim L, Kwon D, Rieh J S, et al. RF characterization and modeling of various wire bond transitions. IEEE Trans Adv Packag, 2005, 28: 772 doi: 10.1109/TADVP.2005.853554
[57]
Jentzsch A, Heinrich W. Theory and measurements of flip-chip interconnects for frequencies up to 100 GHz. IEEE Trans Microw Theory Tech, 2001, 49: 871 doi: 10.1109/22.920143
[58]
Tessmann A, Riessle M, Kudszus S, et al. A flip-chip packaged coplanar 94 GHz amplifier module with efficient suppression of parasitic substrate effects. IEEE Microw Wireless Compon Lett, 2004, 14: 145 doi: 10.1109/LMWC.2004.827115
[59]
Sakai K, Kawano M, Aruga H, et al. Photodiode packaging technique using ball lens and offset parabolic mirror. J Lightw Technol, 2009, 27(17): 3874 doi: 10.1109/JLT.2009.2020068
[60]
DoiY, Oguma M, Ito M, et al. Compact ROSA for 100-Gb/s (4 × 25 Gb/s) ethernet with a PLC-based AWG demultiplexer. National Fiber Optic Engineers Conference, 2013: NW1J.5
[61]
Lee J K, Kang S K, Huh J Y, et al. Highly alignment tolerant 4 × 25 Gb/s ROSA module for 100G ethernet optical transceiver. 39th European Conference and Exhibition on Optical Communication, 2013: 1
[62]
Isaac B, Song B, Xia X, et al. Hybrid integration of UTC-PDs on silicon photonics. CLEO: Science and Innovations, 2017: SM4O.1
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 13715 Times PDF downloads: 540 Times Cited by: 0 Times

    History

    Received: 17 August 2017 Revised: 22 September 2017 Online: Accepted Manuscript: 11 November 2017Corrected proof: 15 November 2017Published: 01 December 2017

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Zeping Zhao, Jianguo Liu, Yu Liu, Ninghua Zhu. High-speed photodetectors in optical communication system[J]. Journal of Semiconductors, 2017, 38(12): 121001. doi: 10.1088/1674-4926/38/12/121001 Z P Zhao, J G Liu, Y Liu, N H Zhu. High-speed photodetectors in optical communication system[J]. J. Semicond., 2017, 38(12): 121001. doi: 10.1088/1674-4926/38/12/121001.Export: BibTex EndNote
      Citation:
      Zeping Zhao, Jianguo Liu, Yu Liu, Ninghua Zhu. High-speed photodetectors in optical communication system[J]. Journal of Semiconductors, 2017, 38(12): 121001. doi: 10.1088/1674-4926/38/12/121001

      Z P Zhao, J G Liu, Y Liu, N H Zhu. High-speed photodetectors in optical communication system[J]. J. Semicond., 2017, 38(12): 121001. doi: 10.1088/1674-4926/38/12/121001.
      Export: BibTex EndNote

      High-speed photodetectors in optical communication system

      doi: 10.1088/1674-4926/38/12/121001
      Funds:

      Project supported by the Preeminence Youth Fund of China (No. 61625504).

      More Information
      • Corresponding author: Email: jgliu@semi.ac.cn
      • Received Date: 2017-08-17
      • Revised Date: 2017-09-22
      • Published Date: 2017-12-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return