J. Semicond. > Volume 36 > Issue 12 > Article Number: 124001

Nanoscale potential barrier distributions and their effect on current transport in Ni/n type Si Schottky diode

M. Yeganeh , N. Balkanian and Sh. Rahmatallahpur

+ Author Affiliations + Find other works by these authors

PDF

Abstract: We have experimentally studied the Ni/n-Si nano Schottky barrier height(SBH) and potential difference between patches in the nano Schottky diodes(SD) using contact atomic force microscopy(C-AFM) in tapping mode and scanning tunneling microscopy(STM). Topology measurement of the surface with C-AFM showed that, a single Ni/n-Si SD consists of many patches with different sizes. These patches are sets of parallel diodes and electrically interacting contacts of 5 to 50 nm sizes and between these individual diodes, there exists an additional electric field. In real metal semiconductor contacts(MSC), patches with quite different configurations, various geometrical sizes and local work functions were randomly distributed on the surface of the metal. The direction and intensity of the additional electric field are distributed in homogenously along the contact metal surface. SBH controls the electronic transport across the MS interface and therefore, is of vital importance to the successful operation of semiconductor devices.

Key words: nano Schottky diodeadditional electrical fieldnanopatchSTM and C-AFM

Abstract: We have experimentally studied the Ni/n-Si nano Schottky barrier height(SBH) and potential difference between patches in the nano Schottky diodes(SD) using contact atomic force microscopy(C-AFM) in tapping mode and scanning tunneling microscopy(STM). Topology measurement of the surface with C-AFM showed that, a single Ni/n-Si SD consists of many patches with different sizes. These patches are sets of parallel diodes and electrically interacting contacts of 5 to 50 nm sizes and between these individual diodes, there exists an additional electric field. In real metal semiconductor contacts(MSC), patches with quite different configurations, various geometrical sizes and local work functions were randomly distributed on the surface of the metal. The direction and intensity of the additional electric field are distributed in homogenously along the contact metal surface. SBH controls the electronic transport across the MS interface and therefore, is of vital importance to the successful operation of semiconductor devices.

Key words: nano Schottky diodeadditional electrical fieldnanopatchSTM and C-AFM



References:

[1]

Mamedov R K. Features of the potential barrier and current flow in the narrow Schottky diodes[J]. Superlattices and Microstructures, 2013, 60: 300.

[2]

Torkhov N A, Bozhkov V G. Fractal character of the distribution of surface potential irregularities in epitaxial n-GaAs(100)[J]. Semiconductors, 2009, 15743(5): 551.

[3]

Yeganeh M A, Rahmatallahpur S, Nozad A. Effect of diode size and series resistance on barrier height and ideality factor in nearly ideal Au/n-type-GaAs micro Schottky contact diodes[J]. Chin Phys B, 2010, 19(10): 10.

[4]

Monch W. Electronic structure of metal-semiconductor contacts[J]. Phys Rev B, 1988, 37: 7129.

[5]

Tung R T. Recent advances in Schottky barrier concepts[J]. Mater Sci Eng, 2001, 35: 1.

[6]

Schmitsdorf R F, Kampen T U, Monch W. Explanation of the linear correlation between barrier heights and ideality factors of real metal-semiconductor contacts by laterally nonuniform Schottky barriers[J]. J Vac Sci Technol B, 1997, 15: 1221.

[7]

Yeganeh M, Rahmatallahpur S, Mamedov R K. Investigation of nano patches in Ni/n-Si micro Schottky diodes with new aspect[J]. Materials Science in Semiconductor Processing, 2011, 14: 266.

[8]

Torkhov N A. Method to determine the interface's fractal dimensions of metal-semiconductor electric contacts from their static instrumental characteristics[J]. Journal of Surface Investigation, X-ray, Synchrotron and Neutron Techniques, 2010, 4: 45.

[9]

Torkhova N A, Novikov V A. Fractal geometry of the surface potential in electrochemically deposited platinum and palladium films[J]. Semiconductors, 2009, 43: 1071.

[10]

Mamedov R K, Yeganeh M A. Current transport and formation of energy structures in narrow Au/n-GaAs Schottky diodes[J]. Microelectron Reliab, 2012, 52: 418.

[11]

Torkhov N A. Method to determine the interface's fractal dimensions of metal-semiconductor electric contacts from their static instrumental characteristics[J]. Journal of Surface Investigation, X-ray, Synchrotron and Neutron Techniques, 2010, 4(1): 45.

[12]

Szkutnik P D, Piednoir A, Ronda A. STM studies:spatial resolution limits to fit observations in nanotechnology[J]. Appl Surf Sci, 2000, 164: 169.

[13]

Bell L D, Kaiser W J. Observation of interface band structure by ballistic-electron-emission microscopy[J]. Phys Rev Lett, 1988, 61: 2368.

[14]

Giannazzo F, Roccaforte F, Raineri V. Electrical properties of self-assembled nano-Schottky diodes[J]. Europhys Lett, 2006, 74: 686.

[15]

Giannazzo F, Roccaforte F, Iucolano F. Temperature dependence of electrical characteristics of Pt/GaN Schottky diode fabricated by UHV e-beam evaporation[J]. J Vac Sci Technol B, 2009, 27: 789.

[16]

Hasegawa H, Sato T, Kasai S. Unpinning of Fermi level in nanometer-sized Schottky contacts on GaAs and InP[J]. Appl Surf Sci, 2000, 166: 92.

[17]

Acar S, Karadeniz S, Tugluoglu N. Gaussian distribution of inhomogeneous barrier height in Ag/p-Si(100) Schottky barrier diodes[J]. Appl Surf Sci, 2004, 233: 373.

[18]

Pashaev I G. Electrophysical properties of Schottky diodes made on the basis of silicon with amorphous and polycrystalline metal alloy at low direct voltage[J]. International Journal on Technical and Physical Problems of Engineering, 2012, 10(4): 41.

[19]

Song J Q, Ding T, Li J. Scanning tunneling microscope study of nano sized metal-semiconductor contacts between ErSi2 nano islands and Si(001) substrate[J]. Surf Sci, 2010, 604: 361.

[20]

Vande Leemput L E C, van Kempen H. Scanning tunnelling microscopy[J]. Rep Prog Phys, 2012, 55: 1165.

[21]

Alberti A, Giannazzo F. Nanoscale study of the current transport through transrotational NiSi/n-Si contacts by conductive atomic force microscopy[J]. Appl Phys Lett, 2012, 101: 261906.

[22]

Ernst M, Hans J H, Roland B. Scanning probe microscopy:the lab on a tip[J]. Springer, 2004: 210.

[1]

Mamedov R K. Features of the potential barrier and current flow in the narrow Schottky diodes[J]. Superlattices and Microstructures, 2013, 60: 300.

[2]

Torkhov N A, Bozhkov V G. Fractal character of the distribution of surface potential irregularities in epitaxial n-GaAs(100)[J]. Semiconductors, 2009, 15743(5): 551.

[3]

Yeganeh M A, Rahmatallahpur S, Nozad A. Effect of diode size and series resistance on barrier height and ideality factor in nearly ideal Au/n-type-GaAs micro Schottky contact diodes[J]. Chin Phys B, 2010, 19(10): 10.

[4]

Monch W. Electronic structure of metal-semiconductor contacts[J]. Phys Rev B, 1988, 37: 7129.

[5]

Tung R T. Recent advances in Schottky barrier concepts[J]. Mater Sci Eng, 2001, 35: 1.

[6]

Schmitsdorf R F, Kampen T U, Monch W. Explanation of the linear correlation between barrier heights and ideality factors of real metal-semiconductor contacts by laterally nonuniform Schottky barriers[J]. J Vac Sci Technol B, 1997, 15: 1221.

[7]

Yeganeh M, Rahmatallahpur S, Mamedov R K. Investigation of nano patches in Ni/n-Si micro Schottky diodes with new aspect[J]. Materials Science in Semiconductor Processing, 2011, 14: 266.

[8]

Torkhov N A. Method to determine the interface's fractal dimensions of metal-semiconductor electric contacts from their static instrumental characteristics[J]. Journal of Surface Investigation, X-ray, Synchrotron and Neutron Techniques, 2010, 4: 45.

[9]

Torkhova N A, Novikov V A. Fractal geometry of the surface potential in electrochemically deposited platinum and palladium films[J]. Semiconductors, 2009, 43: 1071.

[10]

Mamedov R K, Yeganeh M A. Current transport and formation of energy structures in narrow Au/n-GaAs Schottky diodes[J]. Microelectron Reliab, 2012, 52: 418.

[11]

Torkhov N A. Method to determine the interface's fractal dimensions of metal-semiconductor electric contacts from their static instrumental characteristics[J]. Journal of Surface Investigation, X-ray, Synchrotron and Neutron Techniques, 2010, 4(1): 45.

[12]

Szkutnik P D, Piednoir A, Ronda A. STM studies:spatial resolution limits to fit observations in nanotechnology[J]. Appl Surf Sci, 2000, 164: 169.

[13]

Bell L D, Kaiser W J. Observation of interface band structure by ballistic-electron-emission microscopy[J]. Phys Rev Lett, 1988, 61: 2368.

[14]

Giannazzo F, Roccaforte F, Raineri V. Electrical properties of self-assembled nano-Schottky diodes[J]. Europhys Lett, 2006, 74: 686.

[15]

Giannazzo F, Roccaforte F, Iucolano F. Temperature dependence of electrical characteristics of Pt/GaN Schottky diode fabricated by UHV e-beam evaporation[J]. J Vac Sci Technol B, 2009, 27: 789.

[16]

Hasegawa H, Sato T, Kasai S. Unpinning of Fermi level in nanometer-sized Schottky contacts on GaAs and InP[J]. Appl Surf Sci, 2000, 166: 92.

[17]

Acar S, Karadeniz S, Tugluoglu N. Gaussian distribution of inhomogeneous barrier height in Ag/p-Si(100) Schottky barrier diodes[J]. Appl Surf Sci, 2004, 233: 373.

[18]

Pashaev I G. Electrophysical properties of Schottky diodes made on the basis of silicon with amorphous and polycrystalline metal alloy at low direct voltage[J]. International Journal on Technical and Physical Problems of Engineering, 2012, 10(4): 41.

[19]

Song J Q, Ding T, Li J. Scanning tunneling microscope study of nano sized metal-semiconductor contacts between ErSi2 nano islands and Si(001) substrate[J]. Surf Sci, 2010, 604: 361.

[20]

Vande Leemput L E C, van Kempen H. Scanning tunnelling microscopy[J]. Rep Prog Phys, 2012, 55: 1165.

[21]

Alberti A, Giannazzo F. Nanoscale study of the current transport through transrotational NiSi/n-Si contacts by conductive atomic force microscopy[J]. Appl Phys Lett, 2012, 101: 261906.

[22]

Ernst M, Hans J H, Roland B. Scanning probe microscopy:the lab on a tip[J]. Springer, 2004: 210.

[1]

Mutabar Shah, M. H. Sayyad, Kh. S. Karimov. Electrical characterization of the organic semiconductor Ag/CuPc/Au Schottky diode. J. Semicond., 2011, 32(4): 044001. doi: 10.1088/1674-4926/32/4/044001

[2]

Lucky Agarwal, Shweta Tripathi, P. Chakrabarti. Analysis of structural, optical and electrical properties of metal/p-ZnO-based Schottky diode. J. Semicond., 2017, 38(10): 104002. doi: 10.1088/1674-4926/38/10/104002

[3]

M. A. Yeganeh, R. K. Mamedov, A. J. Novinrooz. Nano inhomogeneity effects on small Ag/n-Si Schottky diode parameters at high temperature. J. Semicond., 2013, 34(8): 082002. doi: 10.1088/1674-4926/34/8/082002

[4]

Liu Ming, Chen Baoqin, Xie Changqing, , Wang Congshun, Long Shibing, Xu Qiuxia, , Li Zhigang, Yili Chengrong. Nano Electrical Devices and Integration. J. Semicond., 2006, 27(S1): 7.

[5]

Yan Xuejian, Li Xu, Zhang Qun, Wang Weijun, Ji Xiaosong, Qiu Weimin, Hua Zhongyi. Electrical Characterization and Surface Modification of Organic Electric Bistable Material Based on STM. J. Semicond., 2003, 24(S1): 114.

[6]

Guo Wenge, Zhang Yancao, Zheng Jianbang, Ren Ju. Investigation of a Type of Organic/Metal Schottky Diode. J. Semicond., 2006, 27(3): 545.

[7]

, , . Design and Fabrication of Schottky Diode with Standard CMOS Process. J. Semicond., 2005, 26(2): 238.

[8]

Cai Daolin, Li Ping, Zhai Yahong, Zhang Shuren. Electrical Properties of a PZT Ferroelectric Field Effect Transistor. J. Semicond., 2007, 28(11): 1782.

[9]

A. Resfa, Bourzig Y Smahi, Brahimi R Menezla. Study and modeling of the transport mechanism in a Schottky diode on the basis of a GaAs semiinsulator. J. Semicond., 2011, 32(12): 124001. doi: 10.1088/1674-4926/32/12/124001

[10]

Chen Fengping, Zhang Yuming, Lü Hongliang, Zhang Yimen, Guo Hui, Guo Xin. Fabrication and characteristics of a 4H-SiC junction barrier Schottky diode. J. Semicond., 2011, 32(6): 064003. doi: 10.1088/1674-4926/32/6/064003

[11]

Wen Ruming, Sun Hao, Teng Teng, Li Lingyun, Sun Xiaowei. An InP-based heterodimensional Schottky diode for terahertz detection. J. Semicond., 2012, 33(10): 104001. doi: 10.1088/1674-4926/33/10/104001

[12]

Wang Lingjie, Yang Zunxian, Lin Jinyang, Guo Tailiang. Influence of morphologies on the field emission performance of oriented ZnO nano-arrays. J. Semicond., 2011, 32(12): 123001. doi: 10.1088/1674-4926/32/12/123001

[13]

Yong Lei, Hongbiao Shi, Hai Lu, Dunjun Chen, Rong Zhang, Youdou Zheng. Field plate engineering for GaN-based Schottky barrier diodes. J. Semicond., 2013, 34(5): 054007. doi: 10.1088/1674-4926/34/5/054007

[14]

Luo Yangming, Sun Ying, Wang Changbin, Han Jun, Liu Jun, Fu Zhonghua. Preparation of Pt/C/PTFE Nano-Hydrophobic Catalyst. J. Semicond., 2003, 24(S1): 123.

[15]

Chen Lei, Du Huan. An analytical model for the surface electrical field distribution of LDMOSFETs with shield rings. J. Semicond., 2011, 32(5): 054003. doi: 10.1088/1674-4926/32/5/054003

[16]

Wu Rufei, Zhang Jian, Yin Junjian, Zhang Haiying. A C-Band Monolithic GaAs PIN Diode SPST Switch. J. Semicond., 2008, 29(5): 879.

[17]

Jie Huang, Qian Zhao, Hao Yang, Junrong Dong, Haiying Zhang. Planar Schottky varactor diode and corresponding large signal model for millimeter-wave applications. J. Semicond., 2014, 35(5): 054006. doi: 10.1088/1674-4926/35/5/054006

[18]

Yongshun Wang, Li Rui, Adnan Ghaffar, Zaixing Wang, Chunjuan Liu. Improvements on high voltage capacity and high temperature performances of Si-based Schottky potential barrier diode. J. Semicond., 2015, 36(2): 024013. doi: 10.1088/1674-4926/36/2/024013

[19]

Kamal Zeghdar, Lakhdar Dehimi, Achour Saadoune, Nouredine Sengouga. Inhomogeneous barrier height effect on the current-voltage characteristics of an Au/n-InP Schottky diode. J. Semicond., 2015, 36(12): 124002. doi: 10.1088/1674-4926/36/12/124002

[20]

P. Vigneshwara Raja, N. V. L. Narasimha Murty. Thermally annealed gamma irradiated Ni/4H-SiC Schottky barrier diode characteristics. J. Semicond., 2019, 40(2): 022804. doi: 10.1088/1674-4926/40/2/022804

Search

Advanced Search >>

GET CITATION

M. Yeganeh, N. Balkanian, Sh. Rahmatallahpur. Nanoscale potential barrier distributions and their effect on current transport in Ni/n type Si Schottky diode[J]. J. Semicond., 2015, 36(12): 124001. doi: 10.1088/1674-4926/36/12/124001.

Export: BibTex EndNote

Article Metrics

Article views: 1190 Times PDF downloads: 7 Times Cited by: 0 Times

History

Manuscript received: 22 April 2015 Manuscript revised: Online: Published: 01 December 2015

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误