ARTICLES

Quantum cascade superluminescent light emitters with high power and compact structure

Jialin Sun1, 4, Chuncai Hou2, 3, 4, Hongmei Chen4, Jinchuan Zhang2, Ning Zhuo2, Jiqiang Ning5, Changcheng Zheng6, Zhanguo Wang2, Fengqi Liu2 and Ziyang Zhang1, 4,

+ Author Affiliations

 Corresponding author: Ziyang Zhang, Email: zyzhang2014@sinano.ac.cn

PDF

Turn off MathJax

Abstract: Quantum cascade (QC) superluminescent light emitters (SLEs) have emerged as desirable broadband mid-infrared (MIR) light sources for growing number of applications in areas like medical imaging, gas sensing and national defense. However, it is challenging to obtain a practical high-power device due to the very low efficiency of spontaneous emission in the intersubband transitions in QC structures. Herein a design of ~5 μm SLEs is demonstrated with a two-phonon resonance-based QC active structure coupled with a compact combinatorial waveguide structure which comprises a short straight part adjacent to a tilted stripe and to a J-shaped waveguide. The as-fabricated SLEs achieve a high output power of 1.8 mW, exhibiting the potential to be integrated into array devices without taking up too much chip space. These results may facilitate the realization of SLE arrays to attain larger output power and pave the pathway towards the practical applications of broadband MIR light sources.

Key words: quantum cascadesuperluminescent diodemid-wave infrared



[1]
Faist J, Capasso F, Sivco D L, et al. Quantum cascade laser. Science, 1994, 264(5158), 553 doi: 10.1126/science.264.5158.553
[2]
Vitiello M S, Scalari G, Williams B, et al. Quantum cascade lasers: 20 years of challenges. Opt Express, 2015, 23(4), 5167 doi: 10.1364/OE.23.005167
[3]
Zhang Z Y, Hogg R A, Lv X Q, et al. Self-assembled quantum-dot superluminescent light-emitting diodes. Adv Opt Photonics, 2010, 2(2), 201 doi: 10.1364/AOP.2.000201
[4]
Riedi S, Cappelli F, Blaser S, et al. Broadband superluminescence, 5.9 μm to 7.2 μm, of a quantum cascade gain device. Opt Express, 2015, 23(6), 7184 doi: 10.1364/OE.23.007184
[5]
Zia N, Viheriala J, Koivusalo E, et al. GaSb superluminescent diodes with broadband emission at 2.55 μm. Appl Phys Lett, 2018, 112(5), 051106 doi: 10.1063/1.5015974
[6]
Brezinski M E, Fujimoto J G. Optical coherence tomography: high-resolutionimaging in nontransparent tissue. IEEE J Sel Top Quantum Electron, 1999, 5(4), 1185 doi: 10.1109/2944.796345
[7]
Fujimoto J G, Pitris C, Boppart S A, et al. Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy. Neoplasia, 2000, 2(1/2), 9 doi: 10.1038/sj.neo.7900071
[8]
Zhang Z Y, Wang Z G, Xu B, et al. High-performance quantum-dot superluminescent diodes. IEEE Photon Technol Lett, 2004, 16(1), 27 doi: 10.1109/LPT.2003.820481
[9]
Jiang Q, Zhang Z Y, Hopkinson M, et al. High performance intermixed p-doped quantum dot superluminescent diodes at 1.2 μm. Electron Lett, 2010, 46(4), 295 doi: 10.1049/el.2010.3550
[10]
Chen S M, Zhou K J, Zhang Z Y, et al. Hybrid quantum well/quantum dot structure for broad spectral bandwidth emitters. IEEE J Sel Top Quant, 2013, 19(4), 1900209 doi: 10.1109/JSTQE.2012.2235175
[11]
Seddon A B. Mid-infrared (IR) – a hot topic: the potential for using mid-IR light for non-invasive early detection of skin cancer in vivo. Phys Status Solidi B, 2013, 250(5), 1020 doi: 10.1002/pssb.201248524
[12]
Lopez-Lorente A I, Mizaikoff B. Mid-infrared spectroscopy for protein analysis: potential and challenges. Anal Bioanal Chem, 2016, 408(11), 2875 doi: 10.1007/s00216-016-9375-5
[13]
Wang F F, Jin P, Wu J, et al. Active multi-mode-interferometer broadband superluminescent diodes. J Semicond, 2016, 37(1), 014006 doi: 10.1088/1674-4926/37/1/014006
[14]
Zorin I, Su R, Prylepa A, et al. Mid-infrared Fourier-domain optical coherence tomography with a pyroelectric linear array. Opt Express, 2018, 26(25), 33428 doi: 10.1364/OE.26.033428
[15]
Zibik E A, Ng W H, Revin D G, et al. Broadband 6 μm < λ < 8 μm superluminescent quantum cascade light-emitting diodes. Appl Phys Lett, 2006, 88(12), 121109 doi: 10.1063/1.2188371
[16]
Aung N L, Yu Z, Yu Y, et al. High peak power (≥ 10 mW) quantum cascade superluminescent emitter. Appl Phys Lett, 2014, 105(22), 221111 doi: 10.1063/1.4903349
[17]
Zheng M C, Aung N L, Basak A, et al. High power spiral cavity quantum cascade superluminescent emitter. Opt Express, 2015, 23(3), 2713 doi: 10.1364/OE.23.002713
[18]
Causa F, Burrow L. Ripple-free high-power super-luminescent diode arrays. IEEE J Quantum Electron, 2007, 43(11), 1055 doi: 10.1109/JQE.2007.905291
[19]
Hou C C, Chen H M, Zhang J C, et al. Near-infrared and mid-infrared semiconductor broadband light emitters. Light Sci Appl, 2018, 7, 17170 doi: 10.1038/lsa.2017.170
[20]
Hou C C, Sun J L, Ning J Q, et al. Room-temperature quantum cascade superluminescent light emitters with wide bandwidth and high temperature stability. Opt Express, 2018, 26(11), 13730 doi: 10.1364/OE.26.013730
[21]
Fercher A F, Drexler W, Hitzenberger C K, et al. Optical coherence tomography—principles andapplications. Rep Prog Phys, 2003, 66, 239 doi: 10.1088/0034-4885/66/2/204
Fig. 1.  (Color online) Illustration of (a) the band structure of the four-QW coupling and two-phonon resonance-based QC structure, and (b) the corresponding layered cross-sectional structure of the QC material.

Fig. 2.  (Color online) (a) Schematic diagram of the double-trench narrow ridge waveguide structure of SLE devices. (b) Corresponding scanning electron microscope image of the straight end. The top-view microscope images of SLE devices with (c) 8°- or (d) 12°-inclined TW.

Fig. 3.  (Color online) Schematic drawings (left) and optical field simulations (right) of the SLEs with (a) α = 0°, (b) α = 8°, or (c) α = 12°, respectively.

Fig. 4.  (Color online) Emission characteristics of SLEs measured under quasi-CW (15 kHz, 2 μs) mode at 80 K: (a) L–I curve of the SLE with α = 8°, and the inset is the corresponding lasing spectrum at 780 mA; (b) L–I curve and (c) emission spectra of the coated SLE.

Fig. 5.  (Color online) (a) L–I curve and (b) emission spectra of SLEs with α = 12° measured under quasi-CW (15 kHz, 2 μs) regime at 80 K.

[1]
Faist J, Capasso F, Sivco D L, et al. Quantum cascade laser. Science, 1994, 264(5158), 553 doi: 10.1126/science.264.5158.553
[2]
Vitiello M S, Scalari G, Williams B, et al. Quantum cascade lasers: 20 years of challenges. Opt Express, 2015, 23(4), 5167 doi: 10.1364/OE.23.005167
[3]
Zhang Z Y, Hogg R A, Lv X Q, et al. Self-assembled quantum-dot superluminescent light-emitting diodes. Adv Opt Photonics, 2010, 2(2), 201 doi: 10.1364/AOP.2.000201
[4]
Riedi S, Cappelli F, Blaser S, et al. Broadband superluminescence, 5.9 μm to 7.2 μm, of a quantum cascade gain device. Opt Express, 2015, 23(6), 7184 doi: 10.1364/OE.23.007184
[5]
Zia N, Viheriala J, Koivusalo E, et al. GaSb superluminescent diodes with broadband emission at 2.55 μm. Appl Phys Lett, 2018, 112(5), 051106 doi: 10.1063/1.5015974
[6]
Brezinski M E, Fujimoto J G. Optical coherence tomography: high-resolutionimaging in nontransparent tissue. IEEE J Sel Top Quantum Electron, 1999, 5(4), 1185 doi: 10.1109/2944.796345
[7]
Fujimoto J G, Pitris C, Boppart S A, et al. Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy. Neoplasia, 2000, 2(1/2), 9 doi: 10.1038/sj.neo.7900071
[8]
Zhang Z Y, Wang Z G, Xu B, et al. High-performance quantum-dot superluminescent diodes. IEEE Photon Technol Lett, 2004, 16(1), 27 doi: 10.1109/LPT.2003.820481
[9]
Jiang Q, Zhang Z Y, Hopkinson M, et al. High performance intermixed p-doped quantum dot superluminescent diodes at 1.2 μm. Electron Lett, 2010, 46(4), 295 doi: 10.1049/el.2010.3550
[10]
Chen S M, Zhou K J, Zhang Z Y, et al. Hybrid quantum well/quantum dot structure for broad spectral bandwidth emitters. IEEE J Sel Top Quant, 2013, 19(4), 1900209 doi: 10.1109/JSTQE.2012.2235175
[11]
Seddon A B. Mid-infrared (IR) – a hot topic: the potential for using mid-IR light for non-invasive early detection of skin cancer in vivo. Phys Status Solidi B, 2013, 250(5), 1020 doi: 10.1002/pssb.201248524
[12]
Lopez-Lorente A I, Mizaikoff B. Mid-infrared spectroscopy for protein analysis: potential and challenges. Anal Bioanal Chem, 2016, 408(11), 2875 doi: 10.1007/s00216-016-9375-5
[13]
Wang F F, Jin P, Wu J, et al. Active multi-mode-interferometer broadband superluminescent diodes. J Semicond, 2016, 37(1), 014006 doi: 10.1088/1674-4926/37/1/014006
[14]
Zorin I, Su R, Prylepa A, et al. Mid-infrared Fourier-domain optical coherence tomography with a pyroelectric linear array. Opt Express, 2018, 26(25), 33428 doi: 10.1364/OE.26.033428
[15]
Zibik E A, Ng W H, Revin D G, et al. Broadband 6 μm < λ < 8 μm superluminescent quantum cascade light-emitting diodes. Appl Phys Lett, 2006, 88(12), 121109 doi: 10.1063/1.2188371
[16]
Aung N L, Yu Z, Yu Y, et al. High peak power (≥ 10 mW) quantum cascade superluminescent emitter. Appl Phys Lett, 2014, 105(22), 221111 doi: 10.1063/1.4903349
[17]
Zheng M C, Aung N L, Basak A, et al. High power spiral cavity quantum cascade superluminescent emitter. Opt Express, 2015, 23(3), 2713 doi: 10.1364/OE.23.002713
[18]
Causa F, Burrow L. Ripple-free high-power super-luminescent diode arrays. IEEE J Quantum Electron, 2007, 43(11), 1055 doi: 10.1109/JQE.2007.905291
[19]
Hou C C, Chen H M, Zhang J C, et al. Near-infrared and mid-infrared semiconductor broadband light emitters. Light Sci Appl, 2018, 7, 17170 doi: 10.1038/lsa.2017.170
[20]
Hou C C, Sun J L, Ning J Q, et al. Room-temperature quantum cascade superluminescent light emitters with wide bandwidth and high temperature stability. Opt Express, 2018, 26(11), 13730 doi: 10.1364/OE.26.013730
[21]
Fercher A F, Drexler W, Hitzenberger C K, et al. Optical coherence tomography—principles andapplications. Rep Prog Phys, 2003, 66, 239 doi: 10.1088/0034-4885/66/2/204
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 4083 Times PDF downloads: 51 Times Cited by: 0 Times

    History

    Received: 19 September 2019 Revised: 14 October 2019 Online: Accepted Manuscript: 08 November 2019Uncorrected proof: 12 November 2019Published: 02 January 2020

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Jialin Sun, Chuncai Hou, Hongmei Chen, Jinchuan Zhang, Ning Zhuo, Jiqiang Ning, Changcheng Zheng, Zhanguo Wang, Fengqi Liu, Ziyang Zhang. Quantum cascade superluminescent light emitters with high power and compact structure[J]. Journal of Semiconductors, 2020, 41(1): 012301. doi: 10.1088/1674-4926/41/1/012301 J L Sun, C C Hou, H M Chen, J C Zhang, N Zhuo, J Q Ning, C C Zheng, Z G Wang, F Q Liu, Z Y Zhang, Quantum cascade superluminescent light emitters with high power and compact structure[J]. J. Semicond., 2020, 41(1): 012301. doi: 10.1088/1674-4926/41/1/012301.Export: BibTex EndNote
      Citation:
      Jialin Sun, Chuncai Hou, Hongmei Chen, Jinchuan Zhang, Ning Zhuo, Jiqiang Ning, Changcheng Zheng, Zhanguo Wang, Fengqi Liu, Ziyang Zhang. Quantum cascade superluminescent light emitters with high power and compact structure[J]. Journal of Semiconductors, 2020, 41(1): 012301. doi: 10.1088/1674-4926/41/1/012301

      J L Sun, C C Hou, H M Chen, J C Zhang, N Zhuo, J Q Ning, C C Zheng, Z G Wang, F Q Liu, Z Y Zhang, Quantum cascade superluminescent light emitters with high power and compact structure[J]. J. Semicond., 2020, 41(1): 012301. doi: 10.1088/1674-4926/41/1/012301.
      Export: BibTex EndNote

      Quantum cascade superluminescent light emitters with high power and compact structure

      doi: 10.1088/1674-4926/41/1/012301
      More Information
      • Corresponding author: Email: zyzhang2014@sinano.ac.cn
      • Received Date: 2019-09-19
      • Revised Date: 2019-10-14
      • Published Date: 2020-01-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return