ARTICLES

Metal–insulator transition in few-layered GaTe transistors

Xiuxin Xia1, 2, Xiaoxi Li1, 2, and Hanwen Wang1, 2,

+ Author Affiliations

 Corresponding author: Xiaoxi Li, xxli@imr.ac.cn; Hanwen Wang, hwwang15s@imr.ac.cn

PDF

Turn off MathJax

Abstract: Two-dimensional (2D) materials have triggered enormous interest thanks to their interesting properties and potential applications, ranging from nanoelectronics to energy catalysis and biomedicals. In addition to other widely investigated 2D materials, GaTe, a layered material with a direct band gap of ~1.7 eV, is of importance for applications such as optoelectronics. However, detailed information on the transport properties of GaTe is yet to be explored, especially at low temperatures. Here, we report on electrical transport measurements on few-layered GaTe field effect transistors (FETs) encapsulated by h-BN at different temperatures. We find that by tuning the carrier density, ambipolar transport was realized in GaTe devices, and an electrical-field-induced metal to insulator transition (MIT) was observed when it was hole doped. The mobilities of GaTe devices show a clear dependence on temperature and increase with the decrease of temperature, reaching ~1200 cm2V−1s−1 at 3 K. Our findings may inspire further electronic studies in devices based on GaTe.

Key words: metal-insulator transitiongate tunableGaTefield effect transistors



[1]
Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films. Science, 2004, 306(5696), 666 doi: 10.1126/science.1102896
[2]
Geim A K, Grigorieva I V. Van der Waals heterostructures. Nature, 2013, 499(7459), 419 doi: 10.1038/nature12385
[3]
Liu Y, Weiss N O, Duan X, et al. Van der Waals heterostructures and devices. Nat Rev Mater, 2016, 1(9), 1 doi: 10.1038/natrevmats.2016.42
[4]
Saito Y, Iwasa Y. Ambipolar insulator-to-metal transition in black phosphorus by ionic-liquid gating. ACS Nano, 2015, 9(3), 3192 doi: 10.1021/acsnano.5b00497
[5]
Wang Z, Zhang T, Ding M, et al. Electric-field control of magnetism in a few-layered van der Waals ferromagnetic semiconductor. Nat Nanotechnol, 2018, 13(7), 554 doi: 10.1038/s41565-018-0186-z
[6]
Saito R, Fujita M, Dresselhaus G, et al. Electronic structure of chiral graphene tubules. Appl Phys Lett, 1992, 60(18), 2204 doi: 10.1063/1.107080
[7]
Mak K F, McGill K L, Park J, et al. The valley Hall effect in MoS2 transistors. Science, 2014, 344(6191), 1489 doi: 10.1126/science.1250140
[8]
Huang B, Clark G, Klein D R, et al. Electrical control of 2D magnetism in bilayer CrI3. Nat Nanotechnol, 2018, 13(7), 544 doi: 10.1038/s41565-018-0121-3
[9]
Wang X, Tang J, Xia X, et al. Current-driven magnetization switching in a van der Waals ferromagnet Fe3GeTe2. Sci Adv, 2019, 5(8), eaaw8904 doi: 10.1126/sciadv.aaw8904
[10]
Mott N. Metal–insulator transition. Rev Mod Phys, 1968, 40(4), 677 doi: 10.1103/RevModPhys.40.677
[11]
Kravchenko S, Simonian D, Sarachik M, et al. Electric field scaling at a B = 0 metal-insulator transition in two dimensions. Phys Rev Lett, 1996, 77(24), 4938 doi: 10.1103/PhysRevLett.77.4938
[12]
Frenzel A J, McLeod A S, Wang D Z R, et al. Infrared nanoimaging of the metal–insulator transition in the charge-density-wave van der Waals material 1T-TaS2. Phys Rev B, 2018, 97(3), 035111 doi: 10.1103/PhysRevB.97.035111
[13]
Radisavljevic B, Kis A. Mobility engineering and a metal–insulator transition in monolayer MoS2. Nat Mater, 2013, 12(9), 815 doi: 10.1038/nmat3687
[14]
Ponomarenko L, Geim A, Zhukov A, et al. Tunable metal–insulator transition in double-layer graphene heterostructures. Nat Phys, 2011, 7(12), 958 doi: 10.1038/nphys2114
[15]
Cen C, Thiel S, Hammerl G, et al. Nanoscale control of an interfacial metal–insulator transition at room temperature. Nat Mater, 2008, 7(4), 298 doi: 10.1038/nmat2136
[16]
Wu C L, Yuan H, Li Y, et al. Gate-induced metal–insulator transition in MoS2 by solid superionic conductor LaF3. Nano Lett, 2018, 18(4), 2387 doi: 10.1021/acs.nanolett.7b05377
[17]
Patil P, Ghosh S, Wasala M, et al. Evidence of metal-insulator transition in 2D Van der Waals layers of copper indium selenide (CuIn7Se11). APS Meeting Abstracts, 2019
[18]
Duvjir G, Choi B K, Jang I, et al. Emergence of a metal–insulator transition and high-temperature charge-density waves in VSe2 at the monolayer limit. Nano Lett, 2018, 18(9), 5432 doi: 10.1021/acs.nanolett.8b01764
[19]
Cao Y, Fatemi V, Fang S, et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature, 2018, 556(7699), 43 doi: 10.1038/nature26160
[20]
Liu F, Shimotani H, Shang H, et al. High-sensitivity photodetectors based on multilayer GaTe flakes. ACS Nano, 2014, 8(1), 752 doi: 10.1021/nn4054039
[21]
Huang S, Tatsumi Y, Ling X, et al. In-plane optical anisotropy of layered gallium telluride. ACS Nano, 2016, 10(9), 8964 doi: 10.1021/acsnano.6b05002
[22]
Kang J, Sangwan V K, Lee H S, et al. Solution-processed layered gallium telluride thin-film photodetectors. ACS Photonics, 2018, 5(10), 3996 doi: 10.1021/acsphotonics.8b01066
[23]
Wang Z, Safdar M, Mirza M, et al. High-performance flexible photodetectors based on GaTe nanosheets. Nanoscale, 2015, 7(16), 7252 doi: 10.1039/C4NR07313D
[24]
Wang H, Chen M L, Zhu M, et al. Gate tunable giant anisotropic resistance in ultra-thin GaTe. Nat Commun, 2019, 10(1), 1 doi: 10.1038/s41467-018-07882-8
[25]
Cai H, Chen B, Wang G, et al. Synthesis of highly anisotropic semiconducting GaTe nanomaterials and emerging properties enabled by epitaxy. Adv Mater, 2017, 29(8), 1605551 doi: 10.1002/adma.201605551
[26]
Wang Z, Xu K, Li Y, et al. Role of Ga vacancy on a multilayer GaTe phototransistor. ACS Nano, 2014, 8(5), 4859 doi: 10.1021/nn500782n
[27]
Castellanos-Gomez A, Buscema M, Molenaar R, et al. Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping. 2D Mater, 2014, 1(1), 011002 doi: 10.1088/2053-1583/1/1/011002
[28]
Feng J, Qian X, Huang C W, et al. Strain-engineered artificial atom as a broad-spectrum solar energy funnel. Nat Photonics, 2012, 6(12), 866 doi: 10.1038/nphoton.2012.285
[29]
Cui Y, Xin R, Yu Z, et al. High-performance monolayer WS2 field-effect transistors on high-κ dielectrics. Adv Mater, 2015, 27(35), 5230 doi: 10.1002/adma.201502222
[30]
Movva H C, Rai A, Kang S, et al. High-mobility holes in dual-gated WSe2 field-effect transistors. ACS Nano, 2015, 9(10), 10402 doi: 10.1021/acsnano.5b04611
[31]
Radisavljevic B, Radenovic A, Brivio J, et al. Single-layer MoS2 transistors. Nat Nanotechnol, 2011, 6(3), 147 doi: 10.1038/nnano.2010.279
[32]
Ovchinnikov D, Allain A, Huang Y S, et al. Electrical transport properties of single-layer WS2. ACS Nano, 2014, 8(8), 8174 doi: 10.1021/nn502362b
[33]
Dean C R, Young A F, Meric I, et al. Boron nitride substrates for high-quality graphene electronics. Nat Nanotechnol, 2010, 5(10), 722 doi: 10.1038/nnano.2010.172
Fig. 1.  (Color online) Characterizations of GaTe and a typical BN/GaTe/BN device. (a) Schematic of GaTe layered lattice, with the interlayer spacing of ~0.8 nm. (b) Schematic illustration of the device. (c) Optical micrograph of the device, the scale bar is 10 µm. (d) AFM morphology image of the device with a height profile plotted in (e), plotted along the green dashed line in (d).

Fig. 2.  (Color online) Electrical transport properties of BN/GaTe/BN devices at room temperature. (a) Field effect curve at Vds = 2 V of the device. (b) The same data plotted in a log scale. (c) IdsVds curves on the hole side at fixed gate voltages. (d) IdsVds curves on the electron side at fixed gate voltages.

Fig. 3.  (Color online) Transport properties of BN/GaTe/BN devices at different temperatures. (a) Color map of I–V curves as a function of gate voltage at different temperatures. To enhance the visibility, color scales are set to cutoffs at ±1 nA. (b, c) Line cuts in (a), with output curves on hole and electron sides, respectively.

Fig. 4.  (Color online) Temperature-dependent transport characteristics in few-layered GaTe device with a constant voltage Vds = 2 V. (a) T-dependence of conductivity σ for different gate voltages. (b) IdsVg at different temperatures, Ids increases when the temperature decreases at high negative gate voltage Vg < −30 V. (c) Field-effect mobility as a function of temperature. The solid black line is best fitted to the power law in the range of 100–250 K.

[1]
Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films. Science, 2004, 306(5696), 666 doi: 10.1126/science.1102896
[2]
Geim A K, Grigorieva I V. Van der Waals heterostructures. Nature, 2013, 499(7459), 419 doi: 10.1038/nature12385
[3]
Liu Y, Weiss N O, Duan X, et al. Van der Waals heterostructures and devices. Nat Rev Mater, 2016, 1(9), 1 doi: 10.1038/natrevmats.2016.42
[4]
Saito Y, Iwasa Y. Ambipolar insulator-to-metal transition in black phosphorus by ionic-liquid gating. ACS Nano, 2015, 9(3), 3192 doi: 10.1021/acsnano.5b00497
[5]
Wang Z, Zhang T, Ding M, et al. Electric-field control of magnetism in a few-layered van der Waals ferromagnetic semiconductor. Nat Nanotechnol, 2018, 13(7), 554 doi: 10.1038/s41565-018-0186-z
[6]
Saito R, Fujita M, Dresselhaus G, et al. Electronic structure of chiral graphene tubules. Appl Phys Lett, 1992, 60(18), 2204 doi: 10.1063/1.107080
[7]
Mak K F, McGill K L, Park J, et al. The valley Hall effect in MoS2 transistors. Science, 2014, 344(6191), 1489 doi: 10.1126/science.1250140
[8]
Huang B, Clark G, Klein D R, et al. Electrical control of 2D magnetism in bilayer CrI3. Nat Nanotechnol, 2018, 13(7), 544 doi: 10.1038/s41565-018-0121-3
[9]
Wang X, Tang J, Xia X, et al. Current-driven magnetization switching in a van der Waals ferromagnet Fe3GeTe2. Sci Adv, 2019, 5(8), eaaw8904 doi: 10.1126/sciadv.aaw8904
[10]
Mott N. Metal–insulator transition. Rev Mod Phys, 1968, 40(4), 677 doi: 10.1103/RevModPhys.40.677
[11]
Kravchenko S, Simonian D, Sarachik M, et al. Electric field scaling at a B = 0 metal-insulator transition in two dimensions. Phys Rev Lett, 1996, 77(24), 4938 doi: 10.1103/PhysRevLett.77.4938
[12]
Frenzel A J, McLeod A S, Wang D Z R, et al. Infrared nanoimaging of the metal–insulator transition in the charge-density-wave van der Waals material 1T-TaS2. Phys Rev B, 2018, 97(3), 035111 doi: 10.1103/PhysRevB.97.035111
[13]
Radisavljevic B, Kis A. Mobility engineering and a metal–insulator transition in monolayer MoS2. Nat Mater, 2013, 12(9), 815 doi: 10.1038/nmat3687
[14]
Ponomarenko L, Geim A, Zhukov A, et al. Tunable metal–insulator transition in double-layer graphene heterostructures. Nat Phys, 2011, 7(12), 958 doi: 10.1038/nphys2114
[15]
Cen C, Thiel S, Hammerl G, et al. Nanoscale control of an interfacial metal–insulator transition at room temperature. Nat Mater, 2008, 7(4), 298 doi: 10.1038/nmat2136
[16]
Wu C L, Yuan H, Li Y, et al. Gate-induced metal–insulator transition in MoS2 by solid superionic conductor LaF3. Nano Lett, 2018, 18(4), 2387 doi: 10.1021/acs.nanolett.7b05377
[17]
Patil P, Ghosh S, Wasala M, et al. Evidence of metal-insulator transition in 2D Van der Waals layers of copper indium selenide (CuIn7Se11). APS Meeting Abstracts, 2019
[18]
Duvjir G, Choi B K, Jang I, et al. Emergence of a metal–insulator transition and high-temperature charge-density waves in VSe2 at the monolayer limit. Nano Lett, 2018, 18(9), 5432 doi: 10.1021/acs.nanolett.8b01764
[19]
Cao Y, Fatemi V, Fang S, et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature, 2018, 556(7699), 43 doi: 10.1038/nature26160
[20]
Liu F, Shimotani H, Shang H, et al. High-sensitivity photodetectors based on multilayer GaTe flakes. ACS Nano, 2014, 8(1), 752 doi: 10.1021/nn4054039
[21]
Huang S, Tatsumi Y, Ling X, et al. In-plane optical anisotropy of layered gallium telluride. ACS Nano, 2016, 10(9), 8964 doi: 10.1021/acsnano.6b05002
[22]
Kang J, Sangwan V K, Lee H S, et al. Solution-processed layered gallium telluride thin-film photodetectors. ACS Photonics, 2018, 5(10), 3996 doi: 10.1021/acsphotonics.8b01066
[23]
Wang Z, Safdar M, Mirza M, et al. High-performance flexible photodetectors based on GaTe nanosheets. Nanoscale, 2015, 7(16), 7252 doi: 10.1039/C4NR07313D
[24]
Wang H, Chen M L, Zhu M, et al. Gate tunable giant anisotropic resistance in ultra-thin GaTe. Nat Commun, 2019, 10(1), 1 doi: 10.1038/s41467-018-07882-8
[25]
Cai H, Chen B, Wang G, et al. Synthesis of highly anisotropic semiconducting GaTe nanomaterials and emerging properties enabled by epitaxy. Adv Mater, 2017, 29(8), 1605551 doi: 10.1002/adma.201605551
[26]
Wang Z, Xu K, Li Y, et al. Role of Ga vacancy on a multilayer GaTe phototransistor. ACS Nano, 2014, 8(5), 4859 doi: 10.1021/nn500782n
[27]
Castellanos-Gomez A, Buscema M, Molenaar R, et al. Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping. 2D Mater, 2014, 1(1), 011002 doi: 10.1088/2053-1583/1/1/011002
[28]
Feng J, Qian X, Huang C W, et al. Strain-engineered artificial atom as a broad-spectrum solar energy funnel. Nat Photonics, 2012, 6(12), 866 doi: 10.1038/nphoton.2012.285
[29]
Cui Y, Xin R, Yu Z, et al. High-performance monolayer WS2 field-effect transistors on high-κ dielectrics. Adv Mater, 2015, 27(35), 5230 doi: 10.1002/adma.201502222
[30]
Movva H C, Rai A, Kang S, et al. High-mobility holes in dual-gated WSe2 field-effect transistors. ACS Nano, 2015, 9(10), 10402 doi: 10.1021/acsnano.5b04611
[31]
Radisavljevic B, Radenovic A, Brivio J, et al. Single-layer MoS2 transistors. Nat Nanotechnol, 2011, 6(3), 147 doi: 10.1038/nnano.2010.279
[32]
Ovchinnikov D, Allain A, Huang Y S, et al. Electrical transport properties of single-layer WS2. ACS Nano, 2014, 8(8), 8174 doi: 10.1021/nn502362b
[33]
Dean C R, Young A F, Meric I, et al. Boron nitride substrates for high-quality graphene electronics. Nat Nanotechnol, 2010, 5(10), 722 doi: 10.1038/nnano.2010.172
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3841 Times PDF downloads: 95 Times Cited by: 0 Times

    History

    Received: 27 March 2020 Revised: 22 April 2020 Online: Uncorrected proof: 27 May 2020Published: 02 July 2020

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Xiuxin Xia, Xiaoxi Li, Hanwen Wang. Metal–insulator transition in few-layered GaTe transistors[J]. Journal of Semiconductors, 2020, 41(7): 072902. doi: 10.1088/1674-4926/41/7/072902 X X Xia, X X Li, H W Wang, Metal–insulator transition in few-layered GaTe transistors[J]. J. Semicond., 2020, 41(7): 072902. doi: 10.1088/1674-4926/41/7/072902.Export: BibTex EndNote
      Citation:
      Xiuxin Xia, Xiaoxi Li, Hanwen Wang. Metal–insulator transition in few-layered GaTe transistors[J]. Journal of Semiconductors, 2020, 41(7): 072902. doi: 10.1088/1674-4926/41/7/072902

      X X Xia, X X Li, H W Wang, Metal–insulator transition in few-layered GaTe transistors[J]. J. Semicond., 2020, 41(7): 072902. doi: 10.1088/1674-4926/41/7/072902.
      Export: BibTex EndNote

      Metal–insulator transition in few-layered GaTe transistors

      doi: 10.1088/1674-4926/41/7/072902
      More Information

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return