ARTICLES

Non-volatile optical memory in vertical van der Waals heterostructures

Siyu Zhou1, 2, 3 and Bo Peng1, 2, 3,

+ Author Affiliations

 Corresponding author: Bo Peng, Email: bo_peng@uestc.edu.cn

PDF

Turn off MathJax

Abstract: Emulating synaptic plasticity in an artificial neural network is crucial to mimic the basic functions of the human brain. In this work, we report a new optoelectronic resistive random access memory (ORRAM) in a three-layer vertical heterostructure of graphene/CdSe quantum dots (QDs)/graphene, which shows non-volatile multi-level optical memory under optical stimuli, giving rise to light-tunable synaptic behaviors. The optical non-volatile storage time is up to ~450 s. The device realizes the function of multi-level optical storage through the interlayer changes between graphene and QDs. This work highlights the feasibility for applying two-dimensional (2D) materials in ORRAM and optoelectronic synaptic devices towards artificial vision.

Key words: ORRAMheterostructuresynaptic devices



[1]
Waldrop M M. The chips are down for Moore’s law. Nature, 2016, 530(7589), 144 doi: 10.1038/530144a
[2]
Indiveri G, Liu S C. Memory and information processing in neuromorphic systems. Proc IEEE, 2015, 103(8), 1379 doi: 10.1109/JPROC.2015.2444094
[3]
Cho S, Tan S H, Li Z, et al. SiGe epitaxial memory for neuromorphic computing with reproducible high performance based on engineered dislocations. Nat Mater, 2018, 17(4), 335 doi: 10.1038/s41563-017-0001-5
[4]
Lü J , Chen Y B , Zuo Z, et al. Charge storage characteristics of nonvolatile floating-gate memory based on gradual Ge1– xSi x/Si heteronanocrystals. J Semicond, 2008, 29(4), 770
[5]
Zhou H Y, Shi H P, Cheng B C. Surface traps-related nonvolatile resistive switching memory effect in a single SnO2:Sm nanowire. J Semicond, 2020, 41(1), 012101 doi: 10.1088/1674-4926/41/1/012101
[6]
Shen J, Cong J, Chai Y, et al. Nonvolatile memory based on nonlinear magnetoelectric effects. Phys Rev Appl, 2016, 6(2), 021001 doi: 10.1103/PhysRevApplied.6.021001
[7]
Shen J, Cong J, Shang D, et al. A multilevel nonvolatile magnetoelectric memory. Sci Rep, 2016, 6, 34473 doi: 10.1038/srep34473
[8]
Jo S H, Chang T, Ebong I, et al. Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett, 2010, 10(4), 1297 doi: 10.1021/nl904092h
[9]
Li C, Hu M, Li Y, et al. Analogue signal and image processing with large memristor crossbars. Nat Electron, 2017, 1(1), 52 doi: 10.1038/s41928-017-0002-z
[10]
Zhu D, Li Y, Shen W, et al. Resistive random access memory and its applications in storage and nonvolatile logic. J Semicond, 2017, 38(7), 071002 doi: 10.1088/1674-4926/38/7/071002
[11]
Zhou F, Zhou Z, Chen J, et al. Optoelectronic resistive random access memory for neuromorphic vision sensors. Nat Nanotechnol, 2019, 14(8), 776 doi: 10.1038/s41565-019-0501-3
[12]
Britnell L, Ribeiro R M, Eckmann A, et al. Strong light-matter interactions in heterostructures of atomically thin films. Science, 2013, 340(6138), 1311 doi: 10.1126/science.1235547
[13]
Tran M D, Kim J H, Kim H, et al. Role of hole trap sites in MoS2 for inconsistency in optical and electrical phenomena. ACS Appl Mater Interfaces, 2018, 10(12), 10580 doi: 10.1021/acsami.8b00541
[14]
Yang H, Heo J, Park S, et al. Graphene barristor, a triode device with a gate-controlled Schottky barrier. Science, 2012, 336(6085), 1140 doi: 10.1126/science.1220527
[15]
Yu W, Liu Y, Zhou H, et al. Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials. Nat Nanotech, 2013, 8(12), 952 doi: 10.1038/nnano.2013.219
[16]
Wang X, Xie W, Xu J B. Graphene based non-volatile memory devices. Adv Mater, 2014, 26(31), 5496 doi: 10.1002/adma.201306041
[17]
Zhou F, Chen J, Tao X, et al. 2D materials based optoelectronic memory: convergence of electronic memory and optical sensor. Research (Wash D C), 2019, 9490413 doi: 10.34133/2019/9490413
[18]
Wang Q, Wen Y, Cai K, et al. Nonvolatile infrared memory in MoS2/PbS van der Waals heterostructures. Sci Adv, 2018, 4(4), 7916 doi: 10.1126/sciadv.aap7916
[19]
Chen S, Lou Z, Chen D, et al. An artificial flexible visual memory system based on an UV-motivated memristor. Adv Mater, 2018, 30(7), 1705400 doi: 10.1002/adma.201705400
[20]
Tan H, Liu G, Yang H, et al. Light-gated memristor with integrated logic and memory functions. ACS Nano, 2017, 11(11), 11298 doi: 10.1021/acsnano.7b05762
[21]
Kang C G, Lee S K, Choe S, et al. Intrinsic photocurrent characteristics of graphene photodetectors passivated with Al2O3. Opt Express, 2013, 21(20), 23391 doi: 10.1364/OE.21.023391
[22]
Peng B, Li Z, Mutlugun E, et al. Quantum dots on vertically aligned gold nanorod monolayer: plasmon enhanced fluorescence. Nanoscale, 2014, 6(11), 5592 doi: 10.1039/C3NR06341K
[23]
Qiao H, Huang Z, Ren X, et al. Self-powered photodetectors based on 2D materials. Adv Opt Mater, 2020, 8, 1900765 doi: 10.1002/adom.201900765
[24]
Zhang B Y, Liu T, Meng B, et al. Broadband high photoresponse from pure monolayer graphene photodetector. Nat Commun, 2013, 4, 1811 doi: 10.1038/ncomms2830
[25]
Yu Y J, Zhao Y, Ryu S, et al. Tuning the graphene work function by electric field effect. Nano Lett, 2009, 9(10), 3430 doi: 10.1021/nl901572a
[26]
Jasieniak J, Califano M, Watkins S E. Size-dependent valence and conduction band-edge energies of semiconductor nanocrystals. ACS Nano, 2011, 5(7), 5888 doi: 10.1021/nn201681s
[27]
Zhang Y C, Shao Y Y, Lu X B, et al. Defect states and charge trapping characteristics of HfO2 films for high performance nonvolatile memory applications. Appl Phys Lett, 2014, 105(17), 113 doi: 10.1063/1.4900745
[28]
Cho K, Kim T Y, Park W, et al. Gate-bias stress-dependent photoconductive characteristics of multi-layer MoS2, field-effect transistors. Nanotechnology, 2014, 25(15), 155201 doi: 10.1088/0957-4484/25/15/155201
[29]
Bera A, Peng H, Lourembam J, et al. A versatile light-switchable nanorod memory: wurtzite ZnO on perovskite SrTiO3. Adv Funct Mater, 2013, 23(39), 4977 doi: 10.1002/adfm.201300509
[30]
Lee J, Pak S, Lee Y W, et al. Monolayer optical memory cells based on artificial trap-mediated charge storage and release. Nat Commun, 2017, 8, 14734 doi: 10.1038/ncomms14734
Fig. 1.  (Color online) Device schematic. (a) Device with three-layer structure of graphene/CdSe QDs/graphene, silver as the electrodes on each graphene. (b) Circuit connection diagram of the devices.

Fig. 2.  (Color online) (a) Illumination time dependence of output current of a conventional commercial Si photodetector (blue) and our ORRAM synaptic device (red). (b) The non-volatile optical storage characteristic of the ORRAM device. A laser pulse of 637 nm with 0.2 mW/cm2 is used to write; a 0.5 V bias is applied to read. The pulse width is 3 s. (c) The absorption and photoluminescence spectra of CdSe QDs. (d) Under the light illumination at 980 and 637 nm, the relative increase of Ids of the device under three laser pulses respectively. Under 637 nm excitation, the photocurrent significantly increase, even the bias is halved.

Fig. 3.  (Color online) (a) Band offset of Ag, graphene and CdSe QDs. (b) Energy band alignment of graphene and CdSe QDs in the heterojunctions. (c) The gate voltage dependence of Ids under bias of 1 V. (d) Schematic of electrons migration, accumulation and tunneling.

Fig. 4.  (Color online) (a–c) The multi-level resistance states of the ORRAM device under different laser power and bias voltages. (d) Corresponding 2D mapping of ΔIds as a function of bias voltages and laser power.

Fig. 5.  (Color online) Storage state retention time of the device with bias of 1 V.

[1]
Waldrop M M. The chips are down for Moore’s law. Nature, 2016, 530(7589), 144 doi: 10.1038/530144a
[2]
Indiveri G, Liu S C. Memory and information processing in neuromorphic systems. Proc IEEE, 2015, 103(8), 1379 doi: 10.1109/JPROC.2015.2444094
[3]
Cho S, Tan S H, Li Z, et al. SiGe epitaxial memory for neuromorphic computing with reproducible high performance based on engineered dislocations. Nat Mater, 2018, 17(4), 335 doi: 10.1038/s41563-017-0001-5
[4]
Lü J , Chen Y B , Zuo Z, et al. Charge storage characteristics of nonvolatile floating-gate memory based on gradual Ge1– xSi x/Si heteronanocrystals. J Semicond, 2008, 29(4), 770
[5]
Zhou H Y, Shi H P, Cheng B C. Surface traps-related nonvolatile resistive switching memory effect in a single SnO2:Sm nanowire. J Semicond, 2020, 41(1), 012101 doi: 10.1088/1674-4926/41/1/012101
[6]
Shen J, Cong J, Chai Y, et al. Nonvolatile memory based on nonlinear magnetoelectric effects. Phys Rev Appl, 2016, 6(2), 021001 doi: 10.1103/PhysRevApplied.6.021001
[7]
Shen J, Cong J, Shang D, et al. A multilevel nonvolatile magnetoelectric memory. Sci Rep, 2016, 6, 34473 doi: 10.1038/srep34473
[8]
Jo S H, Chang T, Ebong I, et al. Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett, 2010, 10(4), 1297 doi: 10.1021/nl904092h
[9]
Li C, Hu M, Li Y, et al. Analogue signal and image processing with large memristor crossbars. Nat Electron, 2017, 1(1), 52 doi: 10.1038/s41928-017-0002-z
[10]
Zhu D, Li Y, Shen W, et al. Resistive random access memory and its applications in storage and nonvolatile logic. J Semicond, 2017, 38(7), 071002 doi: 10.1088/1674-4926/38/7/071002
[11]
Zhou F, Zhou Z, Chen J, et al. Optoelectronic resistive random access memory for neuromorphic vision sensors. Nat Nanotechnol, 2019, 14(8), 776 doi: 10.1038/s41565-019-0501-3
[12]
Britnell L, Ribeiro R M, Eckmann A, et al. Strong light-matter interactions in heterostructures of atomically thin films. Science, 2013, 340(6138), 1311 doi: 10.1126/science.1235547
[13]
Tran M D, Kim J H, Kim H, et al. Role of hole trap sites in MoS2 for inconsistency in optical and electrical phenomena. ACS Appl Mater Interfaces, 2018, 10(12), 10580 doi: 10.1021/acsami.8b00541
[14]
Yang H, Heo J, Park S, et al. Graphene barristor, a triode device with a gate-controlled Schottky barrier. Science, 2012, 336(6085), 1140 doi: 10.1126/science.1220527
[15]
Yu W, Liu Y, Zhou H, et al. Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials. Nat Nanotech, 2013, 8(12), 952 doi: 10.1038/nnano.2013.219
[16]
Wang X, Xie W, Xu J B. Graphene based non-volatile memory devices. Adv Mater, 2014, 26(31), 5496 doi: 10.1002/adma.201306041
[17]
Zhou F, Chen J, Tao X, et al. 2D materials based optoelectronic memory: convergence of electronic memory and optical sensor. Research (Wash D C), 2019, 9490413 doi: 10.34133/2019/9490413
[18]
Wang Q, Wen Y, Cai K, et al. Nonvolatile infrared memory in MoS2/PbS van der Waals heterostructures. Sci Adv, 2018, 4(4), 7916 doi: 10.1126/sciadv.aap7916
[19]
Chen S, Lou Z, Chen D, et al. An artificial flexible visual memory system based on an UV-motivated memristor. Adv Mater, 2018, 30(7), 1705400 doi: 10.1002/adma.201705400
[20]
Tan H, Liu G, Yang H, et al. Light-gated memristor with integrated logic and memory functions. ACS Nano, 2017, 11(11), 11298 doi: 10.1021/acsnano.7b05762
[21]
Kang C G, Lee S K, Choe S, et al. Intrinsic photocurrent characteristics of graphene photodetectors passivated with Al2O3. Opt Express, 2013, 21(20), 23391 doi: 10.1364/OE.21.023391
[22]
Peng B, Li Z, Mutlugun E, et al. Quantum dots on vertically aligned gold nanorod monolayer: plasmon enhanced fluorescence. Nanoscale, 2014, 6(11), 5592 doi: 10.1039/C3NR06341K
[23]
Qiao H, Huang Z, Ren X, et al. Self-powered photodetectors based on 2D materials. Adv Opt Mater, 2020, 8, 1900765 doi: 10.1002/adom.201900765
[24]
Zhang B Y, Liu T, Meng B, et al. Broadband high photoresponse from pure monolayer graphene photodetector. Nat Commun, 2013, 4, 1811 doi: 10.1038/ncomms2830
[25]
Yu Y J, Zhao Y, Ryu S, et al. Tuning the graphene work function by electric field effect. Nano Lett, 2009, 9(10), 3430 doi: 10.1021/nl901572a
[26]
Jasieniak J, Califano M, Watkins S E. Size-dependent valence and conduction band-edge energies of semiconductor nanocrystals. ACS Nano, 2011, 5(7), 5888 doi: 10.1021/nn201681s
[27]
Zhang Y C, Shao Y Y, Lu X B, et al. Defect states and charge trapping characteristics of HfO2 films for high performance nonvolatile memory applications. Appl Phys Lett, 2014, 105(17), 113 doi: 10.1063/1.4900745
[28]
Cho K, Kim T Y, Park W, et al. Gate-bias stress-dependent photoconductive characteristics of multi-layer MoS2, field-effect transistors. Nanotechnology, 2014, 25(15), 155201 doi: 10.1088/0957-4484/25/15/155201
[29]
Bera A, Peng H, Lourembam J, et al. A versatile light-switchable nanorod memory: wurtzite ZnO on perovskite SrTiO3. Adv Funct Mater, 2013, 23(39), 4977 doi: 10.1002/adfm.201300509
[30]
Lee J, Pak S, Lee Y W, et al. Monolayer optical memory cells based on artificial trap-mediated charge storage and release. Nat Commun, 2017, 8, 14734 doi: 10.1038/ncomms14734
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 4427 Times PDF downloads: 94 Times Cited by: 0 Times

    History

    Received: 18 January 2020 Revised: 30 March 2020 Online: Accepted Manuscript: 29 April 2020Uncorrected proof: 13 May 2020Published: 02 July 2020

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Siyu Zhou, Bo Peng. Non-volatile optical memory in vertical van der Waals heterostructures[J]. Journal of Semiconductors, 2020, 41(7): 072906. doi: 10.1088/1674-4926/41/7/072906 S Y Zhou, B Peng, Non-volatile optical memory in vertical van der Waals heterostructures[J]. J. Semicond., 2020, 41(7): 072906. doi: 10.1088/1674-4926/41/7/072906.Export: BibTex EndNote
      Citation:
      Siyu Zhou, Bo Peng. Non-volatile optical memory in vertical van der Waals heterostructures[J]. Journal of Semiconductors, 2020, 41(7): 072906. doi: 10.1088/1674-4926/41/7/072906

      S Y Zhou, B Peng, Non-volatile optical memory in vertical van der Waals heterostructures[J]. J. Semicond., 2020, 41(7): 072906. doi: 10.1088/1674-4926/41/7/072906.
      Export: BibTex EndNote

      Non-volatile optical memory in vertical van der Waals heterostructures

      doi: 10.1088/1674-4926/41/7/072906
      More Information
      • Corresponding author: Email: bo_peng@uestc.edu.cn
      • Received Date: 2020-01-18
      • Revised Date: 2020-03-30
      • Published Date: 2020-07-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return