Citation: |
Shuo Deng, Mengxi Cui, Jingru Jiang, Chuang Wang, Zengguang Cheng, Huajun Sun, Ming Xu, Hao Tong, Qiang He, Xiangshui Miao. Reconfigurable and polarization-dependent optical filtering for transflective full-color generation utilizing low-loss phase-change materials[J]. Journal of Semiconductors, 2024, 45(7): 072302. doi: 10.1088/1674-4926/23120025
****
S Deng, M X Cui, J R Jiang, C Wang, Z G Cheng, H J Sun, M Xu, H Tong, Q He, and X S Miao, Reconfigurable and polarization-dependent optical filtering for transflective full-color generation utilizing low-loss phase-change materials[J]. J. Semicond., 2024, 45(7), 072302 doi: 10.1088/1674-4926/23120025
|
Reconfigurable and polarization-dependent optical filtering for transflective full-color generation utilizing low-loss phase-change materials
DOI: 10.1088/1674-4926/23120025
More Information
-
Abstract
All-dielectric metasurface, which features low optical absorptance and high resolution, is becoming a promising candidate for full-color generation. However, the optical response of current metamaterials is fixed and lacks active tuning. In this work, we demonstrate a reconfigurable and polarization-dependent active color generation technique by incorporating low-loss phase change materials (PCMs) and CaF2 all-dielectric substrate. Based on the strong Mie resonance effect and low optical absorption structure, a transflective, full-color with high color purity and gamut value is achieved. The spectrum can be dynamically manipulated by changing either the polarization of incident light or the PCM state. High transmittance and reflectance can be simultaneously achieved by using low-loss PCMs and substrate. The novel active metasurfaces can bring new inspiration in the areas of optical encryption, anti-counterfeiting, and display technologies. -
References
[1] Lee T, Jang J, Jeong H, et al. Plasmonic- and dielectric-based structural coloring: From fundamentals to practical applications. Nano Converg, 2018, 5, 1 doi: 10.1186/s40580-017-0133-y[2] Dumanli A G, Savin T. Recent advances in the biomimicry of structural colours. Chem Soc Rev, 2016, 45, 6698 doi: 10.1039/C6CS00129G[3] Uddin M J, Magnusson R. Highly efficient color filter array using resonant Si3N4 gratings. Opt Express, 2013, 21, 12495 doi: 10.1364/OE.21.012495[4] Shrestha V R, Lee S S, Kim E S, et al. Aluminum plasmonics based highly transmissive polarization-independent subtractive color filters exploiting a nanopatch array. Nano Lett, 2014, 14, 6672 doi: 10.1021/nl503353z[5] Sun S, Zhou Z X, Zhang C, et al. All-dielectric full-color printing with TiO2 metasurfaces. ACS Nano, 2017, 11, 4445 doi: 10.1021/acsnano.7b00415[6] Li X, Chen Q M, Zhang X, et al. Time-sequential color code division multiplexing holographic display with metasurface. Opto Electron Adv, 2023, 6, 220060 doi: 10.29026/oea.2023.220060[7] Qu Y R, Li Q, Du K K, et al. Dynamic thermal emission control based on ultrathin plasmonic metamaterials including phase-changing material GST. Laser Photonics Rev, 2017, 11, 1700091 doi: 10.1002/lpor.201700091[8] Hosseini P, Wright C D, Bhaskaran H. An optoelectronic framework enabled by low-dimensional phase-change films. Nature, 2014, 511, 206 doi: 10.1038/nature13487[9] He Q, Youngblood N, Cheng Z G, et al. Dynamically tunable transmissive color filters using ultra-thin phase change materials. Opt Express, 2020, 28, 39841 doi: 10.1364/OE.411874[10] Ollanik A J, Oguntoye I, Ji Y P, et al. Resonance tuning for dynamic Huygens metasurfaces. J Opt Soc Am B, 2021, 38, C105 doi: 10.1364/JOSAB.427848[11] Leitis A, Hessler A, Wahl S, et al. All-dielectric programmable Huygens' metasurfaces. Adv Funct Materials, 2020, 30, 1910259 doi: 10.1002/adfm.201910259[12] Zeng C, Lu H, Mao D, et al. Graphene-empowered dynamic metasurfaces and metadevices. Opto Electron Adv, 2022, 5, 200098 doi: 10.29026/oea.2022.200098[13] Kaissner R, Li J X, Lu W Z, et al. Electrochemically controlled metasurfaces with high-contrast switching at visible frequencies. Sci Adv, 2021, 7 doi: 10.1126/sciadv.abd9450[14] Ee H S, Agarwal R. Tunable metasurface and flat optical zoom lens on a stretchable substrate. Nano Lett, 2016, 16, 2818 doi: 10.1021/acs.nanolett.6b00618[15] Yang W H, Xiao S M, Song Q H, et al. All-dielectric metasurface for high-performance structural color. Nat Commun, 2020, 11, 1864 doi: 10.1038/s41467-020-15773-0[16] Wang Q, Rogers E T F, Gholipour B, et al. Optically reconfigurable metasurfaces and photonic devices based on phase change materials. Nat Photonics, 2016, 10, 60 doi: 10.1038/nphoton.2015.247[17] Shu F Z, Wang J N, Peng R W, et al. Electrically driven tunable broadband polarization states via active metasurfaces based on joule-heat-induced phase transition of vanadium dioxide. Laser Photonics Rev, 2021, 15, 2100155 doi: 10.1002/lpor.202100155[18] Saifullah Y, He Y J, Boag A, et al. Recent progress in reconfigurable and intelligent metasurfaces: A comprehensive review of tuning mechanisms, hardware designs, and applications. Adv Sci, 2022, 9, 2203747 doi: 10.1002/advs.202203747[19] Farmakidis N, Youngblood N, Li X, et al. Plasmonic nanogap enhanced phase-change devices with dual electrical-optical functionality. Sci Adv, 2019, 5, eaaw2687 doi: 10.1126/sciadv.aaw2687[20] Gerislioglu B, Bakan G, Ahuja R, et al. The role of Ge2Sb2Te5 in enhancing the performance of functional plasmonic devices. Mater Today Phys, 2020, 12, 100178 doi: 10.1016/j.mtphys.2020.100178[21] Vassalini I, Alessandri I, de Ceglia D. Stimuli-responsive phase change materials: Optical and optoelectronic applications. Materials, 2021, 14, 3396 doi: 10.3390/ma14123396[22] Zhang F, Xie X, Pu M B, et al. Multistate switching of photonic angular momentum coupling in phase-change metadevices. Adv Mater, 2020, 32, 1908194 doi: 10.1002/adma.201908194[23] Carrillo S G C, Trimby L, Au Y Y, et al. A nonvolatile phase-change metamaterial color display. Adv Opt Mater, 2019, 7, 1801782 doi: 10.1002/adom.201801782[24] Ruiz de Galarreta C, Sinev I, Alexeev A M, et al. Reconfigurable multilevel control of hybrid all-dielectric phase-change metasurfaces. Optica, 2020, 7, 476 doi: 10.1364/OPTICA.384138[25] Rui G H, Ding C C, Gu B, et al. Symmetric Ge2Sb2Te5 based metamaterial absorber induced dynamic wide-gamut structural color. J Opt, 2020, 22, 085003 doi: 10.1088/2040-8986/aba138[26] Lu L, Dong Z G, Tijiptoharsono F, et al. Reversible tuning of Mie resonances in the visible spectrum. ACS Nano, 2021, 15, 19722 doi: 10.1021/acsnano.1c07114[27] Santos G, Losurdo M, Moreno F, et al. Directional scattering switching from an all-dielectric phase change metasurface. Nanomaterials, 2023, 13, 496 doi: 10.3390/nano13030496[28] Moitra P, Wang Y Z, Liang X N, et al. Programmable wavefront control in the visible spectrum using low-loss chalcogenide phase-change metasurfaces. Adv Mater, 2023, 35, e2205367 doi: 10.1002/adma.202205367[29] Prabhathan P, Sreekanth K V, Teng J H, et al. Electrically tunable steganographic nano-optical coatings. Nano Lett, 2023, 23, 5236 doi: 10.1021/acs.nanolett.3c01244[30] Zhang M, Pu M B, Zhang F, et al. Plasmonic metasurfaces for switchable photonic spin-orbit interactions based on phase change materials. Adv Sci, 2018, 5, 1800835 doi: 10.1002/advs.201800835[31] Shu F Z, Yu F F, Peng R W, et al. Dynamic plasmonic color generation based on phase transition of vanadium dioxide. Adv Opt Mater, 2018, 6, 1700939 doi: 10.1002/adom.201700939[32] Jia Z Y, Shu F Z, Gao Y J, et al. Dynamically switching the polarization state of light based on the phase transition of vanadium dioxide. Phys Rev Appl, 2018, 9, 034009 doi: 10.1103/PhysRevApplied.9.034009[33] Choi Y C, Lee D U, Noh J H, et al. Highly improved Sb2S3 sensitized-inorganic–organic heterojunction solar cells and quantification of traps by deep-level transient spectroscopy. Adv Funct Mater, 2014, 24, 3587 doi: 10.1002/adfm.201304238[34] Yu D Y W, Prikhodchenko P V, Mason C W, et al. High-capacity antimony sulphide nanoparticle-decorated graphene composite as anode for sodium-ion batteries. Nat Commun, 2013, 4, 2922 doi: 10.1038/ncomms3922[35] Ito S, Tanaka S, Manabe K, et al. Effects of surface blocking layer of Sb2S3 on nanocrystalline TiO2 for CH3NH3PbI3 perovskite solar cells. J Phys Chem C, 2014, 118, 16995 doi: 10.1021/jp500449z[36] Wu P C, Pala R A, Kafaie Shirmanesh G, et al. Dynamic beam steering with all-dielectric electro-optic III-V multiple-quantum-well metasurfaces. Nat Commun, 2019, 10, 3654 doi: 10.1038/s41467-019-11598-8[37] Shcherbakov M R, Liu S, Zubyuk V V, et al. Ultrafast all-optical tuning of direct-gap semiconductor metasurfaces. Nat Commun, 2017, 8, 17 doi: 10.1038/s41467-017-00019-3[38] Chýlek P, Zhan J. Absorption and scattering of light by small particles: The interference structure. Appl Opt, 1990, 29, 3984 doi: 10.1364/AO.29.003984[39] Lewin L. The electrical constants of a material loaded with spherical particles. J Inst Electr Eng Part I Gen, 1947, 94, 186 doi: 10.1049/ji-1.1947.0057[40] Moon C W, Kim Y, Hyun J K. Active electrochemical high-contrast gratings as on/off switchable and color tunable pixels. Nat Commun, 2022, 13, 3391 doi: 10.1038/s41467-022-31083-z[41] Yang W H, Qu G Y, Lai F X, et al. Dynamic bifunctional metasurfaces for holography and color display. Adv Mater, 2021, 33, e2101258 doi: 10.1002/adma.202101258[42] Song M W, Feng L, Huo P C, et al. Versatile full-colour nanopainting enabled by a pixelated plasmonic metasurface. Nat Nanotechnol, 2023, 18, 71 doi: 10.1038/s41565-022-01256-4 -
Proportional views