Citation: |
Tong Wu, Chen Chen, Jinyi Zhu, Guoxiang Wang, Shixun Dai. Dual-phase coexistence enables to alleviate resistance drift in phase-change films[J]. Journal of Semiconductors, 2024, 45(7): 072303. doi: 10.1088/1674-4926/24040013
****
T Wu, C Chen, J Y Zhu, G X Wang, and S X Dai, Dual-phase coexistence enables to alleviate resistance drift in phase-change films[J]. J. Semicond., 2024, 45(7), 072303 doi: 10.1088/1674-4926/24040013
|
Dual-phase coexistence enables to alleviate resistance drift in phase-change films
DOI: 10.1088/1674-4926/24040013
More Information
-
Abstract
The amorphous phase-change materials with spontaneous structural relaxation leads to the resistance drift with the time for phase-change neuron synaptic devices. Here, we modify the phase change properties of the conventional Ge2Sb2Te5 (GST) material by introducing an SnS phase. It is found that the resistance drift coefficient of SnS-doped GST was decreased from 0.06 to 0.01. It can be proposed that the origin originates from the precipitation of GST nanocrystals accompanied by the precipitation of SnS crystals compared to single-phase GST compound systems. We also found that the decrease in resistance drift can be attributed to the narrowed bandgap from 0.65 to 0.43 eV after SnS-doping. Thus, this study reveals the quantitative relationship between the resistance drift and the band gap and proposes a new idea for alleviating the resistance drift by composition optimization, which is of great significance for finding a promising phase change material.-
Keywords:
- phase change films,
- X-ray methods,
- resistance drift,
- optical band gap
-
References
[1] Ding K, Wang J, Zhou Y, et al. Phase-change heterostructure enables ultralow noise and drift for memory operation. Science, 2019, 366, 210 doi: 10.1126/science.aay0291[2] Zhang W, Mazzarello R, Wuttig M, et al. Designing crystallization in phase-change materials for universal memory and neuro-inspired computing. Nat Rev Mater, 2019, 4, 150 doi: 10.1038/s41578-018-0076-x[3] Zhao J, Song W X, Xin T, et al. Rules of hierarchical melt and coordinate bond to design crystallization in doped phase change materials. Nat Commun, 2021, 12, 1 doi: 10.1038/s41467-020-20314-w[4] Xu M, Xu M, Miao X S. Deep Machine learning unravels the structural origin of mid-gap states in chalcogenide glass for high-density memory integration. InfoMat, 2022, 4, e12315 doi: 10.1002/inf2.12315[5] Xu M, Xu Q D, Gu R C, et al. Tailoring mid-gap states of chalcogenide glass by pressure-induced hypervalent bonding towards the design of electrical switching materials. Adv Funct Mater, 2023, 33, 2304926 doi: 10.1002/adfm.202304926[6] Luckas J, Piarristeguy A, Bruns G, et al. Stoichiometry dependence of resistance drift phenomena in amorphous GeSnTe phase-change alloys. J Appl Phys, 2013, 113, 023704 doi: 10.1063/1.4769871[7] Zhang W, Ma E. Unveiling the structural origin to control resistance drift in phase-change memory materials. Mater Today, 2020, 41, 156 doi: 10.1016/j.mattod.2020.07.016[8] Liu B, Li K, Liu W, et al. Multi-level phase-change memory with ultralow power consumption and resistance drift. Sci Bull, 2021, 66, 2217 doi: 10.1016/j.scib.2021.07.018[9] Boniardi M, lelmini D, Lavizzari S, et al. Statistics of resistance drift due to structural relaxation in phase-change memory arrays. IEEE Trans Electron Dev, 2010, 57, 2690 doi: 10.1109/TED.2010.2058771[10] Li C, Hu C, Wang J, et al. Understanding phase change materials with unexpectedly low resistance drift for phase-change memories. J Mater Chem C, 2018, 6, 3387 doi: 10.1039/C8TC00222C[11] Chen C, Zhu J, Chen Y, et al. Unveiling structural characteristics for ultralow resistance drift in BiSb-Ge2Sb2Te5 materials for phase-change neuron synaptic devices. J Alloys Compd, 2022, 892, 162148 doi: 10.1016/j.jallcom.2021.162148[12] Zhou L, Yang Z, Wang X, et al. Resistance drift suppression utilizing GeTe/Sb2Te3 superlattice-like phase-change materials. Adv Electron Mater, 2020, 6, 1900781 doi: 10.1002/aelm.201900781[13] Rao F, Song Z, Xia M J, et al. High speed phase change memory based on SnTe-doped Ge2Sb2Te5 material. Electrochem Solid State Lett, 2011, 15, 59 doi: 10.1149/2.006203esl[14] Ebrahimi S, Yarmand B, Naderi N. Effect of the sulfur concentration on the optical band gap energy and Urbach tail of spray-deposited ZnS films. Adv Ceram Prog, 2017, 3, 6 doi: 10.30501/ACP.2017.90759[15] Wang K, Wamwangi D, Ziegler S, et al. Influence of Sn doping upon the phase change characteristics of Ge2Sb2Te5. Phys Status Solidi A, 2004, 201, 3087 doi: 10.1002/pssa.200406885[16] Sohila S, Rajalakshmi M, Ghosh C, et al. Optical and Raman scattering studies on SnS nanoparticles. J Alloys Compd, 2011, 509, 5843 doi: 10.1016/j.jallcom.2011.02.141[17] Lu Y, Song S, Shen X, et al. Phase change characteristics of Sb-rich Ga−Sb−Se materials. J Alloys Compd, 2014, 586, 669 doi: 10.1016/j.jallcom.2013.10.076[18] Vidal J, Lany S, d’Avezac M, et al. Band-structure, optical properties, and defect physics of the photovoltaic semiconductor SnS. Appl Phys Lett, 2012, 100, 032104 doi: 10.1063/1.3675880[19] Fantini P, Brazzelli S, Cazzini E, et al. Band gap widening with time induced by structural relaxation in amorphous Ge2Sb2Te5 films. Appl Phys Lett, 2012, 100, 013505 doi: 10.1063/1.3674311[20] Lan R, Otoo S L, Yuan P, et al. Thermoelectric properties of Sn doped GeTe thin films. Appl Surf Sci, 2020, 507, 145025 doi: 10.1016/j.apsusc.2019.145025[21] Gu Y, Song S, Song Z, et al. SixSb2Te materials with stable phase for phase change random access memory applications. J Appl Phys, 2012, 111(5), 054319 doi: 10.1063/1.3693557 -
Proportional views