J. Semicond. > 2024, Volume 45 > Issue 11 > 112102

ARTICLES

A novel approach for observing band gap crossings using the SIMS technique in Pb1−xSnxTe

Zeinab Khosravizadeh, Piotr Dziawa, Sania Dad, Andrzej Dabrowski and Rafał Jakiela

+ Author Affiliations

 Corresponding author: Zeinab Khosravizadeh, khosravi@ifpan.edu.pl

DOI: 10.1088/1674-4926/24040023

PDF

Turn off MathJax

Abstract: This paper introduces a pioneering application of secondary ion mass spectrometry (SIMS) for estimating the electronic properties of Pb1−xSnxTe, a compound categorized as a topological crystalline insulator. The proposed approach marks the first application of SIMS for such estimations and focuses on investigating variations in ionization probabilities and shifts in the energy distribution of secondary ions. The ionization probabilities are influenced by pivotal parameters such as the material's work function and electron affinity. The derivation of these parameters hinges upon the energy gap's positioning relative to the vacuum level for varying values of $ x $ within the Pb1−xSnxTe compound. The findings elucidate noteworthy alterations in SIMS signals, particularly near the critical point of band-gap closing.

Key words: SIMSTCIionization probabilitywork functionPb1−xSnxTeband-gap closing



[1]
Ocio M, Albany H. Two valence band evidence and thermal energy gap in Pb1−xSnxTe. Phys Lett A, 1968, 27(2), 72 doi: 10.1016/0375-9601(68)91125-0
[2]
Preier H. Recent advances in lead-chalcogenide diode lasers. Appl Phys, 1979, 20(3), 189 doi: 10.1007/BF00886018
[3]
Arachchige I, Kanatzidis M. Anomalous band gap evolution from band inversion in Pb1−xSnxTe nanocrystals. Nano Lett, 2009, 9(4), 1583 doi: 10.1021/nl8037757
[4]
Fu L. Topological crystalline insulators. Phys Rev Lett, 2011, 106(10), 106802 doi: 10.1103/PhysRevLett.106.106802
[5]
Dziawa P, Kowalski B J, Dybko K, et al. Topological crystalline insulator states in Pb1−xSnxSe. Nat Mater, 2012, 11(12), 1023 doi: 10.1038/nmat3449
[6]
Xu S, Liu C, Alidoust N, et al. Observation of a topological crystalline insulator phase and topological phase transition in Pb1−xSnxTe. Nat Commun, 2012, 3(1), 1192 doi: 10.1038/ncomms2191
[7]
Tanaka Y, Ren Z, Sato T, et al. Experimental realization of a topological crystalline insulator in SnTe. Nat Phys, 2012, 8(11), 800 doi: 10.1038/nphys2442
[8]
Polley C M, Dziawa P, Reszka A, et al. Observation of topological crystalline insulator surface states on (111)-oriented Pb1−xSnxSe films. Phys Rev B, 2014, 89(7), 075317 doi: 10.1103/PhysRevB.89.075317
[9]
Dimmock J, Melngailis I, Strauss A. Band structure and laser action in PbxSn1−xTe. Phys Rev Lett, 1966, 16(26), 1193 doi: 10.1103/PhysRevLett.16.1193
[10]
Kahn A. Fermi level, work function and vacuum level. Mater Horiz, 2016, 3(1), 7 doi: 10.1039/C5MH00160A
[11]
Desjonqures M, Spanjaard D. Concepts in surface physics. Berlin: Springer, 1996
[12]
Woodruff D. Modern techniques of surface science. Cambridge: Cambridge University Press, 2016
[13]
Janssen A P, Akhter P, Harland C J, et al. High spatial resolution surface potential measurements using secondary electrons. Surf Sci, 1980, 93(2), 453
[14]
Gnaser H. Initial stages of cesium incorporation on keV-Cs+-irradiated surfaces: Positive-ion emission and work-function changes. Phys Rev B, 1996, 54(23), 17141 doi: 10.1103/PhysRevB.54.17141
[15]
Gnaser H. Exponential scaling of sputtered negative-ion yields with transient work-function changes on Cs+ bombarded surfaces. Phys Rev B, 1996, 54(23), 16456 doi: 10.1103/PhysRevB.54.16456
[16]
Yamazaki H, Nakamura S. Work-function changes in high-dose B-implanted Si with keV Cs+ bombardment. Phys Rev B, 1999, 59(19), 12298 doi: 10.1103/PhysRevB.59.12298
[17]
Khosravizadeh Z, Dziawa P, Dad S, et al. Secondary ion mass spectrometry characterization of matrix composition in topological crystalline insulator Pb1−xSnxTe. Thin Solid Films, 2023, 781, 139974 doi: 10.1016/j.tsf.2023.139974
[18]
Berchenko N, Vitchev R, Trzyna M, et al. Surface oxidation of SnTe topological crystalline insulator. Appl Surf Sci, 2018, 452, 134 doi: 10.1016/j.apsusc.2018.04.246
[19]
Yu M. Sputtering by particle bombardment III. Berlin: Springer, 1991
[20]
Mönch W. Semiconductor surfaces and interfaces. Berlin: Springer, 1995
[21]
Bonzel H. Alkali-metal-affected adsorption of molecules on metal surfaces. Surf Sci Rep, 1988, 8(2), 43 doi: 10.1016/0167-5729(88)90007-6
[22]
Blaise G, Slodzian G. Effets comparés de l’oxygène sur l’émission ionique et le potentiel de surface des métaux. Surf Sci, 1973, 40(3), 708 doi: 10.1016/0039-6028(73)90154-4
[23]
Yu M, Lang N. Mechanisms of atomic ion emission during sputtering. Nucl Instrum Meth B, 1986, 14(4), 403 doi: 10.1016/0168-583X(86)90135-7
[24]
Nørskov J K, Lundqvist B I. Secondary-ion emission probability in sputtering. Phys Rev B, 1979, 19(11), 5661 doi: 10.1103/PhysRevB.19.5661
[25]
Buchauer L. Superconductivity and Fermi surface of Tl: PbTe. Master Dissertation, École supérieure de physique et de chimie industrielles de la ville de Paris/Technische Universität Darmstadt, 2017
[26]
He J, Androulakis J, Kanatzidis M, et al. Seeing is believing: Weak phonon scattering from nanostructures in alkali metal-doped lead telluride. Nano Lett, 2012, 12(1), 343 doi: 10.1021/nl203626n
[27]
Kowalczyk L, Szczerbakow A. Temperature and composition dependence of the energy band gap of PbxMnySnxSe alloys. Acta Phys Pol A, 1985, 67(1), 189 doi: 10.1007/BF00618116
[28]
Łusakowski A, Bogusławski P, Story T. Band structure and topological phases of Pb1−x−ySnxMnyTe by ab initio calculations. Phys Rev B, 2021, 103(4), 045202 doi: 10.1103/PhysRevB.103.045202
Fig. 1.  (Colour online) The assumed tin profiles (black curves) along the growth direction in individual Pb1−xSnxTe graded samples (numbered from #1 to #4). A value of $d = 0$ corresponds to the surface. The red and blue solid lines represent the Sn depth profile as measured by SIMS using negative and positive secondary ions, respectively. Horizontal dashed grey lines correspond to values in cladding layers with constant chemical composition. The differences in $x$ between negative and positive SIMS results may result from a disturbance of the element's abundance in MBE source materials. Calibration curves for $x$ in Pb1−xSnxTe are calculated from isotope ions measurements[17].

Fig. 2.  Schematic representation of the energy of the valence band maximum ($ E_\text{VBM} $), conduction band minimum ($ E_\text{CBM} $), and Fermi level ($ E_\text{F} $) relative to the vacuum level ($ E_\text{vac} $). Here, $ A_\text{m} $, $ \phi $, and $ I_\text{m} $ represent the electron affinity of the material, work function, and ionization potential of the material, respectively.

Fig. 3.  (Colour online) Dependence of the intrinsic holes concentration on the Sn content of the Pb1−xSnxTe grown on BaF2. The black solid dots are the data points taken directly from the hall effect measurement and the red dashed line represents a fitting function.

Fig. 4.  (Colour online) SIMS signal as a function of sample potential corresponding to the energy of the positive (a) and negative (b) Sn and Te secondary ions.

Fig. 5.  (Colour online) SIMS signal ratio of the negative ions as a function of $ x $ in Pb1−xSnxTe. The grey lines indicate the fit of linear functions (in log-scale) for two sets of experimental points for low and high $ x $ ranges. The vertical lines mark the intersection points of the fitting functions for Sn/Te and Pb/Te in red and blue, respectively.

Fig. 6.  (Colour online) Estimated values of the sample potential change (representing the shift in the energy distribution of the ion signal) corresponding to the change in the relative work function for negative secondary ions in graded samples as a function of $ x $ in Pb1−xSnxTe. The initial points are on the horizontal grey line at $ \Delta V = 0 $. The spans of $ x $ value correspond to the change of $ x $ in the experimental depth profiles Fig. 1.

Fig. 7.  (Colour online) SIMS signal ratio of the positive ions as a function of $ x $ in Pb1−xSnxTe. The grey lines indicate the fit of linear functions (in log-scale) for two sets of experimental points for low and high $ x $ ranges. The vertical lines mark the intersection points of the fitting functions for Sn+/Te+ and Pb+/Te+ in red and blue, respectively.

Fig. 8.  (Colour online) Estimated values of the sample potential change (representing the shift in the energy distribution of the ion signal) corresponding to the change in the relative electron affinity for positive secondary ions in graded samples as a function of $ x $ in Pb1−xSnxTe. The initial points are on the horizontal grey line at $ \Delta V = 0 $. The spans of $ x $ value correspond to the change of $ x $ in the experimental depth profiles Fig. 1.

Fig. 9.  Schematic representation of the PbTe/SnTe heterostructure arranged from the highest (A) to the lowest (E) possible band-offsets. The bottom and upper bars reflect the valence and conduction bands, respectively. Dark grey bars correspond to PbTe (reference), and light grey denotes the SnTe. Cases (B−D) show band-offsets in typical quantum wells type Ⅰ and Ⅱ. The VL is a vacuum level.

Fig. 10.  (Colour online) Schematic representation of the band structure evolution of the Pb1−xSnxTe in cases B and C. The diagram illustrates the changes in the valence band maximum (VBM) and conduction band minimum (CBM) as the composition x varies from 0 (pure PbTe) to 1 (pure SnTe). The red line represents the VBM, while the black line represents the CBM. The grey-shaded areas highlight the energy gaps between the valence and conduction bands for each composition, demonstrating how the band structure evolves with increasing Sn content.

Table 1.   Basic properties of the elements used in this work.

Element $ A_\text{e} $ (eV) $ I_\text{e} $ (eV)
Sn 1.11 7.34
Pb 0.36 7.42
Te 1.97 9.01
Cs 0.47 3.9
DownLoad: CSV
[1]
Ocio M, Albany H. Two valence band evidence and thermal energy gap in Pb1−xSnxTe. Phys Lett A, 1968, 27(2), 72 doi: 10.1016/0375-9601(68)91125-0
[2]
Preier H. Recent advances in lead-chalcogenide diode lasers. Appl Phys, 1979, 20(3), 189 doi: 10.1007/BF00886018
[3]
Arachchige I, Kanatzidis M. Anomalous band gap evolution from band inversion in Pb1−xSnxTe nanocrystals. Nano Lett, 2009, 9(4), 1583 doi: 10.1021/nl8037757
[4]
Fu L. Topological crystalline insulators. Phys Rev Lett, 2011, 106(10), 106802 doi: 10.1103/PhysRevLett.106.106802
[5]
Dziawa P, Kowalski B J, Dybko K, et al. Topological crystalline insulator states in Pb1−xSnxSe. Nat Mater, 2012, 11(12), 1023 doi: 10.1038/nmat3449
[6]
Xu S, Liu C, Alidoust N, et al. Observation of a topological crystalline insulator phase and topological phase transition in Pb1−xSnxTe. Nat Commun, 2012, 3(1), 1192 doi: 10.1038/ncomms2191
[7]
Tanaka Y, Ren Z, Sato T, et al. Experimental realization of a topological crystalline insulator in SnTe. Nat Phys, 2012, 8(11), 800 doi: 10.1038/nphys2442
[8]
Polley C M, Dziawa P, Reszka A, et al. Observation of topological crystalline insulator surface states on (111)-oriented Pb1−xSnxSe films. Phys Rev B, 2014, 89(7), 075317 doi: 10.1103/PhysRevB.89.075317
[9]
Dimmock J, Melngailis I, Strauss A. Band structure and laser action in PbxSn1−xTe. Phys Rev Lett, 1966, 16(26), 1193 doi: 10.1103/PhysRevLett.16.1193
[10]
Kahn A. Fermi level, work function and vacuum level. Mater Horiz, 2016, 3(1), 7 doi: 10.1039/C5MH00160A
[11]
Desjonqures M, Spanjaard D. Concepts in surface physics. Berlin: Springer, 1996
[12]
Woodruff D. Modern techniques of surface science. Cambridge: Cambridge University Press, 2016
[13]
Janssen A P, Akhter P, Harland C J, et al. High spatial resolution surface potential measurements using secondary electrons. Surf Sci, 1980, 93(2), 453
[14]
Gnaser H. Initial stages of cesium incorporation on keV-Cs+-irradiated surfaces: Positive-ion emission and work-function changes. Phys Rev B, 1996, 54(23), 17141 doi: 10.1103/PhysRevB.54.17141
[15]
Gnaser H. Exponential scaling of sputtered negative-ion yields with transient work-function changes on Cs+ bombarded surfaces. Phys Rev B, 1996, 54(23), 16456 doi: 10.1103/PhysRevB.54.16456
[16]
Yamazaki H, Nakamura S. Work-function changes in high-dose B-implanted Si with keV Cs+ bombardment. Phys Rev B, 1999, 59(19), 12298 doi: 10.1103/PhysRevB.59.12298
[17]
Khosravizadeh Z, Dziawa P, Dad S, et al. Secondary ion mass spectrometry characterization of matrix composition in topological crystalline insulator Pb1−xSnxTe. Thin Solid Films, 2023, 781, 139974 doi: 10.1016/j.tsf.2023.139974
[18]
Berchenko N, Vitchev R, Trzyna M, et al. Surface oxidation of SnTe topological crystalline insulator. Appl Surf Sci, 2018, 452, 134 doi: 10.1016/j.apsusc.2018.04.246
[19]
Yu M. Sputtering by particle bombardment III. Berlin: Springer, 1991
[20]
Mönch W. Semiconductor surfaces and interfaces. Berlin: Springer, 1995
[21]
Bonzel H. Alkali-metal-affected adsorption of molecules on metal surfaces. Surf Sci Rep, 1988, 8(2), 43 doi: 10.1016/0167-5729(88)90007-6
[22]
Blaise G, Slodzian G. Effets comparés de l’oxygène sur l’émission ionique et le potentiel de surface des métaux. Surf Sci, 1973, 40(3), 708 doi: 10.1016/0039-6028(73)90154-4
[23]
Yu M, Lang N. Mechanisms of atomic ion emission during sputtering. Nucl Instrum Meth B, 1986, 14(4), 403 doi: 10.1016/0168-583X(86)90135-7
[24]
Nørskov J K, Lundqvist B I. Secondary-ion emission probability in sputtering. Phys Rev B, 1979, 19(11), 5661 doi: 10.1103/PhysRevB.19.5661
[25]
Buchauer L. Superconductivity and Fermi surface of Tl: PbTe. Master Dissertation, École supérieure de physique et de chimie industrielles de la ville de Paris/Technische Universität Darmstadt, 2017
[26]
He J, Androulakis J, Kanatzidis M, et al. Seeing is believing: Weak phonon scattering from nanostructures in alkali metal-doped lead telluride. Nano Lett, 2012, 12(1), 343 doi: 10.1021/nl203626n
[27]
Kowalczyk L, Szczerbakow A. Temperature and composition dependence of the energy band gap of PbxMnySnxSe alloys. Acta Phys Pol A, 1985, 67(1), 189 doi: 10.1007/BF00618116
[28]
Łusakowski A, Bogusławski P, Story T. Band structure and topological phases of Pb1−x−ySnxMnyTe by ab initio calculations. Phys Rev B, 2021, 103(4), 045202 doi: 10.1103/PhysRevB.103.045202
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 586 Times PDF downloads: 76 Times Cited by: 0 Times

    History

    Received: 15 April 2024 Revised: 31 July 2024 Online: Accepted Manuscript: 02 September 2024Uncorrected proof: 03 September 2024Published: 15 November 2024

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Zeinab Khosravizadeh, Piotr Dziawa, Sania Dad, Andrzej Dabrowski, Rafał Jakiela. A novel approach for observing band gap crossings using the SIMS technique in Pb1−xSnxTe[J]. Journal of Semiconductors, 2024, 45(11): 112102. doi: 10.1088/1674-4926/24040023 ****Z Khosravizadeh, P Dziawa, S Dad, A Dabrowski, and R Jakiela, A novel approach for observing band gap crossings using the SIMS technique in Pb1−xSnxTe[J]. J. Semicond., 2024, 45(11), 112102 doi: 10.1088/1674-4926/24040023
      Citation:
      Zeinab Khosravizadeh, Piotr Dziawa, Sania Dad, Andrzej Dabrowski, Rafał Jakiela. A novel approach for observing band gap crossings using the SIMS technique in Pb1−xSnxTe[J]. Journal of Semiconductors, 2024, 45(11): 112102. doi: 10.1088/1674-4926/24040023 ****
      Z Khosravizadeh, P Dziawa, S Dad, A Dabrowski, and R Jakiela, A novel approach for observing band gap crossings using the SIMS technique in Pb1−xSnxTe[J]. J. Semicond., 2024, 45(11), 112102 doi: 10.1088/1674-4926/24040023

      A novel approach for observing band gap crossings using the SIMS technique in Pb1−xSnxTe

      DOI: 10.1088/1674-4926/24040023
      More Information
      • Zeinab Khosravizadeh is a Ph.D. candidate in solid-state physics at the Polish Academy of Sciences. Her research focuses on material science and semiconductor physics, specializing in secondary ion mass spectrometry, advanced materials characterization. She has also studied diffusion of dopants in semiconductor materials, and synthesizing magnetic Nano particles
      • Rafał Jakiela:Rafal Jakiela is currently a Professor of Physics and Head of the secondary ion mass spectrometry laboratory at the Polish Academy of Sciences. He received his PhD from the Polish Academy of Science in 2005. He is an expert in analysing solid-state materials using SIMS. His studies focus on the diffusion and segregation of dopants in semiconductor materials
      • Corresponding author: khosravi@ifpan.edu.pl
      • Received Date: 2024-04-15
      • Revised Date: 2024-07-31
      • Available Online: 2024-09-02

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return