J. Semicond. > 2024, Volume 45 > Issue 10 > 102801

ARTICLES

Improved efficiency and stability of inverse perovskite solar cells via passivation cleaning

Kunyang Ge and Chunjun Liang

+ Author Affiliations

 Corresponding author: Chunjun Liang, chjliang@bjtu.edu.cn

DOI: 10.1088/1674-4926/24040033CSTR: 32376.14.1674-4926.24040033

PDF

Turn off MathJax

Abstract: Amidst the global energy and environmental crisis, the quest for efficient solar energy utilization intensifies. Perovskite solar cells, with efficiencies over 26% and cost-effective production, are at the forefront of research. Yet, their stability remains a barrier to industrial application. This study introduces innovative strategies to enhance the stability of inverted perovskite solar cells. By bulk and surface passivation, defect density is reduced, followed by a "passivation cleaning" using Apacl amino acid salt and isopropyl alcohol to refine film surface quality. Employing X-ray diffraction (XRD), scanning electron microscope (SEM), and atomic force microscopy (AFM), we confirmed that this process effectively neutralizes surface defects and curbs non-radiative recombination, achieving 22.6% efficiency for perovskite solar cells with the composition Cs0.15FA0.85PbI3. Crucially, the stability of treated cells in long-term tests has been markedly enhanced, laying groundwork for industrial viability.

Key words: perovskite solar cellsstabilitysurface passivation washing processphotoelectric conversion efficiencynonradiative recombination



[1]
Liang Z, Zhang Y, Xu H, et al. Homogenizing out-of-plane cation composition in perovskite solar cells. Nature, 2023, 624(7992), 557 doi: 10.1038/s41586-023-06784-0
[2]
Zhang C, Wang Y, Lin X, et al. Effects of a site doping on the crystallization of perovskite films. J Mater Chem A, 2021, 9(3), 1372 doi: 10.1039/D0TA08656H
[3]
Gong J, Guo P, Benjamin S E, et al. Cation engineering on lead iodide perovskites for stable and high-performance photovoltaic applications. J Energy Chem, 2018, 27(4), 1017 doi: 10.1016/j.jechem.2017.12.005
[4]
Knight A J, Borchert J, Oliver R D J, et al. Halide segregation in mixed-halide perovskites: influence of A-site cations. ACS Energy Lett, 2021, 6(2), 799 doi: 10.1021/acsenergylett.0c02475
[5]
Huang Z, Bai Y, Huang X, et al. Anion–π interactions suppress phase impurities in FAPbI3 solar cells. Nature, 2023, 623(7987), 531 doi: 10.1038/s41586-023-06637-w
[6]
Tan S, Huang T, Yavuz I, et al. Stability-limiting heterointerfaces of perovskite photovoltaics. Nature, 2022, 605(7909), 268 doi: 10.1038/s41586-022-04604-5
[7]
Zhang Z, Chen W, Jiang X, et al. Suppression of phase segregation in wide-bandgap perovskites with thiocyanate ions for perovskite/organic tandems with 25.06% efficiency. Nat Energy, 2024, 9, 592 doi: 10.1038/s41560-024-01491-0
[8]
Saliba M, Matsui T, Seo J Y, et al. Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ Sci, 2016, 9(6), 1989 doi: 10.1039/C5EE03874J
[9]
Ramos-Terrón S, Illanes J F, Bohoyo-Gil D, et al. Insight into the role of guanidinium and cesium in triple cation lead halide perovskites. Sol RRL, 2021, 5(12), 2100586 doi: 10.1002/solr.202100586
[10]
Luo C, Zheng G, Gao F, et al. Engineering the buried interface in perovskite solar cells via lattice-matched electron transport layer. Nat Photonics, 2023, 17(10), 856 doi: 10.1038/s41566-023-01247-4
[11]
Yang W, Ding B, Lin Z, et al. Visualizing interfacial energy offset and defects in efficient 2D/3D heterojunction perovskite solar cells and modules. Adv Mater, 2023, 35(35), 2302071 doi: 10.1002/adma.202302071
[12]
Kempe M D. Ultraviolet light test and evaluation methods for encapsulants of photovoltaic modules. Sol Energy Mater Sol Cells, 2010, 94(2), 246 doi: 10.1016/j.solmat.2009.09.009
[13]
Jorgensen G J, Terwilliger K M, DelCueto J A, et al. Moisture transport, adhesion, and corrosion protection of PV module packaging materials. Sol Energy Mater Sol Cells, 2006, 90(16), 2739 doi: 10.1016/j.solmat.2006.04.003
[14]
Gaulding E A, Louks A E, Yang M, et al. Package development for reliability testing of perovskites. ACS Energy Lett, 2022, 7(8), 2641 doi: 10.1021/acsenergylett.2c01168
[15]
Li J, Xia R, Qi W, et al. Encapsulation of perovskite solar cells for enhanced stability: Structures, materials and characterization. J Power Sources, 2021, 485, 229313 doi: 10.1016/j.jpowsour.2020.229313
[16]
Akin S, Arora N, Zakeeruddin S M, et al. New strategies for defect passivation in high-efficiency perovskite solar cells. Adv Energy Mater, 2020, 10(13), 1903090 doi: 10.1002/aenm.201903090
[17]
Fu L, Li H, Wang L, et al. Defect passivation strategies in perovskites for an enhanced photovoltaic performance. Energy Environ Sci, 2020, 13(11), 4017 doi: 10.1039/D0EE01767A
[18]
Gao F, Zhao Y, Zhang X, et al. Recent progresses on defect passivation toward efficient perovskite solar cells. Adv Energy Mater, 2020, 10(13), 1902650 doi: 10.1002/aenm.201902650
[19]
Sun C, Xu L, Lai X, et al. Advanced strategies of passivating perovskite defects for high-performance solar cells. Energy Environ Mater, 2021, 4(3), 293 doi: 10.1002/eem2.12111
[20]
Zhao Y, Ma F, Qu Z, et al. Inactive (PbI2)2RbCl stabilizes perovskite films for efficient solar cells. Science, 2022, 377(6605), 531 doi: 10.1126/science.abp8873
Fig. 1.  (Color online) Schematic diagram and characterization of perovskite films prepared under the same conditions. (a) Passivation cleaning process flow chart. (b) JV curves of perovskite devices with different lead iodide content in the precursor. (c) UV–vis absorption spectra and Tauc curves. (d) Fluorescence emission spectrum. (e) Fluorescence attenuation curve.

Fig. 2.  (Color online) (a) Device structure diagram of passivation flushing process. (b) JV curves of perovskite devices prepared under different conditions. (c) JV curve of the device at different concentrations of passivator. (d) Efficiency statistics of perovskite devices. (e) EQE curve of perovskite devices. (f) Steady-state output curve of perovskite devices.

Fig. 3.  (Color online) (a) Nyquist curve of perovskite devices prepared under different conditions. (b) SCLC curve of single-hole devices. (c) Dark current curve. (d) XRD pattern of perovskite films.

Fig. 4.  SEM plane image of perovskite film. (a) Excess of 9%. (b) Excess of 9%+A. (c) Excess of 9%+W. (d) Excess of 9%+AW.

Fig. 5.  (Color online) AFM image of perovskite film. (a) Control. (b) Excess of 9%. (c) Excess of 9%+A. (d) Excess of 9%+W. (e) Excess of 9%+AW.

Fig. 6.  (Color online) (a) XPS spectra of Pb-4f under different conditions. (b) JV curve of the device after rinsing using passivator containing only amino group.

Fig. 7.  (Color online) Picture of surface contact angle of perovskite film. (a) Control. (b) Excess of 9%. (c) Excess of 9%+A. (d) Excess of 9%+W. (e) Excess of 9%+AW.

Fig. 8.  (Color online) (a) Operational stability curves for the control and target devices (under continuous illumination, room temperature, N2). (b) Storage stability in air (10 ± 5% RH, 25–45 °C, dark). (c) Thermal stability (75 °C, N2).

Table 1.   Photovoltaic parameters of perovskite devices with different lead iodide content in the precursor.

DevicesJsc (mA/cm2)Voc (V)FF (%)PCE (%)
Control22.231.1063.115.4
Excess 3%21.571.1068.916.3
Excess 6%19.851.1270.915.7
Excess 9%22.461.1473.218.7
Excess 12%18.661.15961.913.4
Excess 15%22.071.1664.916.6
DownLoad: CSV

Table 2.   Fitting parameters of fluorescence attenuation curve of perovskite films prepared under different conditions.

Devices τ1 (ns) A1 (%) τ2 (ns) A2 (%) τavg (ns)
Control 23.3933 23 121.2021 77 115.87
Excess 9% 76.5287 38.5 667.9026 61.5 628.32
Excess 9%+A 21.6203 30.7 400.000 69.3 391.15
Excess 9%+W 131.8198 24.6 573.3679 75.4 542.56
Excess 9%+AW 40.9152 14.3 525.6092 85.7 519.39
Ai is the fraction of τi component. τavg is calculated from the equation $ {\tau }_\rm{avg}=\frac{\displaystyle\sum {A}_{i}{\tau }_{i}^{2}}{\displaystyle\sum {A}_{i}{\tau }_{i}}. $
DownLoad: CSV

Table 3.   Photovoltaic parameters of perovskite devices prepared under different conditions.

Devices Jsc (mA/cm2) Voc (V) FF (%) PCE (%)
Control 25.88 1.04 69.69 18.76
Excess 24.04 1.08 73.98 19.2
Excess+A 24.15 1.02 56.26 13.85
Excess+W 24.49 1.10 69.01 18.59
Excess+AW 25.21 1.14 78.7 22.6
DownLoad: CSV

Table 4.   The photovoltaic parameters of the device with different concentrations of passivator.

Devices Jsc (mA/cm2) Voc (V) FF (%) PCE (%)
ww 23.78 1.08 72.75 18.6
1 mg/ml 21.77 1.12 74.93 18.2
2 mg/ml 24.45 1.12 71.29 19.5
3 mg/ml 25.21 1.14 78.7 22.6
4 mg/ml 22.57 1.14 75.19 19.3
5 mg/ml 23.24 1.14 75.13 19.9
DownLoad: CSV

Table 5.   Parameters extracted from Nyquist curves of perovskite devices prepared under different conditions.

Devices Rs (Ω) Crec (10–9 F/cm) Rrec (103 Ω)
Control 103.7 4.093 4.582
Excess 113.1 4.201 9.310
Excess+A 112.5 3.751 2.879
Excess+W 461.6 3.768 12.06
Excess+AW 163.2 2.447 30.57
DownLoad: CSV

Table 6.   Photovoltaic parameters of the device after rinsing with passivator containing only amino group.

Devices Jsc (mA/cm2) Voc (V) FF (%) PCE (%)
Control 25.88 1.06 65.6 17.9
ApaCl+W 25.01 1.14 79.1 22.54
PEAI+W 24.04 1.08 68.9 17.9
PAI+W 22.01 1.08 69.6 16.5
DownLoad: CSV
[1]
Liang Z, Zhang Y, Xu H, et al. Homogenizing out-of-plane cation composition in perovskite solar cells. Nature, 2023, 624(7992), 557 doi: 10.1038/s41586-023-06784-0
[2]
Zhang C, Wang Y, Lin X, et al. Effects of a site doping on the crystallization of perovskite films. J Mater Chem A, 2021, 9(3), 1372 doi: 10.1039/D0TA08656H
[3]
Gong J, Guo P, Benjamin S E, et al. Cation engineering on lead iodide perovskites for stable and high-performance photovoltaic applications. J Energy Chem, 2018, 27(4), 1017 doi: 10.1016/j.jechem.2017.12.005
[4]
Knight A J, Borchert J, Oliver R D J, et al. Halide segregation in mixed-halide perovskites: influence of A-site cations. ACS Energy Lett, 2021, 6(2), 799 doi: 10.1021/acsenergylett.0c02475
[5]
Huang Z, Bai Y, Huang X, et al. Anion–π interactions suppress phase impurities in FAPbI3 solar cells. Nature, 2023, 623(7987), 531 doi: 10.1038/s41586-023-06637-w
[6]
Tan S, Huang T, Yavuz I, et al. Stability-limiting heterointerfaces of perovskite photovoltaics. Nature, 2022, 605(7909), 268 doi: 10.1038/s41586-022-04604-5
[7]
Zhang Z, Chen W, Jiang X, et al. Suppression of phase segregation in wide-bandgap perovskites with thiocyanate ions for perovskite/organic tandems with 25.06% efficiency. Nat Energy, 2024, 9, 592 doi: 10.1038/s41560-024-01491-0
[8]
Saliba M, Matsui T, Seo J Y, et al. Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ Sci, 2016, 9(6), 1989 doi: 10.1039/C5EE03874J
[9]
Ramos-Terrón S, Illanes J F, Bohoyo-Gil D, et al. Insight into the role of guanidinium and cesium in triple cation lead halide perovskites. Sol RRL, 2021, 5(12), 2100586 doi: 10.1002/solr.202100586
[10]
Luo C, Zheng G, Gao F, et al. Engineering the buried interface in perovskite solar cells via lattice-matched electron transport layer. Nat Photonics, 2023, 17(10), 856 doi: 10.1038/s41566-023-01247-4
[11]
Yang W, Ding B, Lin Z, et al. Visualizing interfacial energy offset and defects in efficient 2D/3D heterojunction perovskite solar cells and modules. Adv Mater, 2023, 35(35), 2302071 doi: 10.1002/adma.202302071
[12]
Kempe M D. Ultraviolet light test and evaluation methods for encapsulants of photovoltaic modules. Sol Energy Mater Sol Cells, 2010, 94(2), 246 doi: 10.1016/j.solmat.2009.09.009
[13]
Jorgensen G J, Terwilliger K M, DelCueto J A, et al. Moisture transport, adhesion, and corrosion protection of PV module packaging materials. Sol Energy Mater Sol Cells, 2006, 90(16), 2739 doi: 10.1016/j.solmat.2006.04.003
[14]
Gaulding E A, Louks A E, Yang M, et al. Package development for reliability testing of perovskites. ACS Energy Lett, 2022, 7(8), 2641 doi: 10.1021/acsenergylett.2c01168
[15]
Li J, Xia R, Qi W, et al. Encapsulation of perovskite solar cells for enhanced stability: Structures, materials and characterization. J Power Sources, 2021, 485, 229313 doi: 10.1016/j.jpowsour.2020.229313
[16]
Akin S, Arora N, Zakeeruddin S M, et al. New strategies for defect passivation in high-efficiency perovskite solar cells. Adv Energy Mater, 2020, 10(13), 1903090 doi: 10.1002/aenm.201903090
[17]
Fu L, Li H, Wang L, et al. Defect passivation strategies in perovskites for an enhanced photovoltaic performance. Energy Environ Sci, 2020, 13(11), 4017 doi: 10.1039/D0EE01767A
[18]
Gao F, Zhao Y, Zhang X, et al. Recent progresses on defect passivation toward efficient perovskite solar cells. Adv Energy Mater, 2020, 10(13), 1902650 doi: 10.1002/aenm.201902650
[19]
Sun C, Xu L, Lai X, et al. Advanced strategies of passivating perovskite defects for high-performance solar cells. Energy Environ Mater, 2021, 4(3), 293 doi: 10.1002/eem2.12111
[20]
Zhao Y, Ma F, Qu Z, et al. Inactive (PbI2)2RbCl stabilizes perovskite films for efficient solar cells. Science, 2022, 377(6605), 531 doi: 10.1126/science.abp8873
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 394 Times PDF downloads: 43 Times Cited by: 0 Times

    History

    Received: 29 April 2024 Revised: 13 June 2024 Online: Accepted Manuscript: 21 June 2024Uncorrected proof: 24 June 2024Published: 15 October 2024

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Kunyang Ge, Chunjun Liang. Improved efficiency and stability of inverse perovskite solar cells via passivation cleaning[J]. Journal of Semiconductors, 2024, 45(10): 102801. doi: 10.1088/1674-4926/24040033 ****K Y Ge and C J Liang, Improved efficiency and stability of inverse perovskite solar cells via passivation cleaning[J]. J. Semicond., 2024, 45(10), 102801 doi: 10.1088/1674-4926/24040033
      Citation:
      Kunyang Ge, Chunjun Liang. Improved efficiency and stability of inverse perovskite solar cells via passivation cleaning[J]. Journal of Semiconductors, 2024, 45(10): 102801. doi: 10.1088/1674-4926/24040033 ****
      K Y Ge and C J Liang, Improved efficiency and stability of inverse perovskite solar cells via passivation cleaning[J]. J. Semicond., 2024, 45(10), 102801 doi: 10.1088/1674-4926/24040033

      Improved efficiency and stability of inverse perovskite solar cells via passivation cleaning

      DOI: 10.1088/1674-4926/24040033
      CSTR: 32376.14.1674-4926.24040033
      More Information
      • Kunyang Ge is a master of Science at the School of Physical Science and Engineering of Beijing Jiaotong University, studied under Professor Chunjun Liang. Her research focus is on organic–inorganic hybrid perovskite solar cells
      • Chunjun Liang received his bachelor's degree from Jilin University in 1995 and his Ph. D. degree from Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences in 2000. He then joined the Department of Physical Science and Materials Science at the City University of Hong Kong as a postdoctoral fellow. He joined Beijing Jiaotong University as a professor in 2002. His research interest is in perovskite solar cells
      • Corresponding author: chjliang@bjtu.edu.cn
      • Received Date: 2024-04-29
      • Revised Date: 2024-06-13
      • Available Online: 2024-06-21

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return