Citation: |
Anjin Liu, Chenxi Hao, Jingyu Huo, Hailong Han, Minglu Wang, Bao Tang, Lingyun Li, Lixing You, Wanhua Zheng. Single-fundamental-mode cryogenic (3.6 K) 850-nm oxide-confined VCSEL[J]. Journal of Semiconductors, 2024, 45(10): 102401. doi: 10.1088/1674-4926/24070025
****
A J Liu, C X Hao, J Y Huo, H L Han, M L Wang, B Tang, L Y Li, L X You, and W H Zheng, Single-fundamental-mode cryogenic (3.6 K) 850-nm oxide-confined VCSEL[J]. J. Semicond., 2024, 45(10), 102401 doi: 10.1088/1674-4926/24070025
|
Single-fundamental-mode cryogenic (3.6 K) 850-nm oxide-confined VCSEL
DOI: 10.1088/1674-4926/24070025
CSTR: 32376.14.1674-4926.24070025
More Information-
Abstract
Cryogenic oxide-confined vertical-cavity surface-emitting laser (VCSEL) has promising application in cryogenic optical interconnect for cryogenic computing. In this paper, we demonstrate a cryogenic 850-nm oxide-confined VCSEL at around 4 K. The cryogenic VCSEL with an optical oxide aperture of 6.5 μm in diameter can operate in single fundamental mode with a side-mode suppression-ratio of 36 dB at 3.6 K, and the fiber-coupled output power reaches 1 mW at 5 mA. The small signal modulation measurements at 298 and 292 K show the fabricated VCSEL has the potential to achieve a high modulation bandwidth at cryogenic temperature. -
References
[1] Holmes D S, Ripple A L, Manheimer M A. Energy-efficient superconducting computing-power budgets and requirements. IEEE Trans Appl Supercond, 2013, 23, 1701610 doi: 10.1109/TASC.2013.2244634[2] Superconducting Technology Assessment, Nat. Secur. Agency, Office Corporate Assessments, Fort Meade, MD, USA, Aug. 2005[3] Liu A J, Wolf P, Lott J A, et al. Vertical-cavity surface-emitting lasers for data communication and sensing. Photon Res, 2019, 7, 121 doi: 10.1364/PRJ.7.000121[4] Goncher G, Lu B, Luo W L, et al. Cryogenic operation of AlGaAs-GaAs vertical-cavity surface-emitting lasers at temperatures from 200 K to 6 K. IEEE Photon Technol Lett, 1996, 8, 316 doi: 10.1109/68.481102[5] Serkland D K, Geib K M, Peake G M, et al. 850-nm VCSELs optimized for cryogenic data transmission. Proc SPIE, 2012, 8276, 82760S doi: 10.1117/12.909590[6] Fu W, Wang H L, Wu H, et al. Cryogenic 50 GHz VCSEL for sub-100 fJ/bit optical link. 2020 IEEE Photonics Conference (IPC), 2020 doi: 10.1109/IPC47351.2020.9252266[7] Fu W N, Wu H N, Feng M. Superconducting processor modulated VCSELs for 4K high-speed optical data link. IEEE J Quantum Electron, 2022, 58, 8000208 doi: 10.1109/JQE.2022.3149512[8] Wu H, Fu W, Liu Z, et al. Cryogenic oxide-VCSEL at 2.8 K demonstrates record bandwidth f-3dB > 50 GHz, Pout > 14 mW and PAM-4 data rate up to 128 Gb/s. Proc Opt Fiber Commun Conf Exhibit (OFC), 2024, M2D. 2[9] Liu A J, Tang B, Li Z Y, et al. 70 Gbps PAM-4 850-nm oxide-confined VCSEL without equalization and pre-emphasis. J Semicond, 2024, 45, 050501 doi: 10.1088/1674-4926/45/5/050501[10] Lu B, Lu Y C, Cheng J, et al. Gigabit-per-second cryogenic optical link using optimized low-temperature AlGaAs-GaAs vertical-cavity surface-emitting lasers. IEEE J Quantum Electron, 1996, 32, 1347 doi: 10.1109/3.511547[11] Zhou P, Lu B, Cheng J L, et al. Vertical-cavity surface-emitting lasers with thermally stable electrical characteristics. J Appl Phys, 1995, 77, 2264 doi: 10.1063/1.358813[12] Wu H, Fu W, Feng M, et al. 2.6K VCSEL data link for cryogenic computing. Appl Phys Lett, 2021, 119, 041101 doi: 10.1063/5.0054128[13] Wu H N, Fu W N, Wu D F, et al. 2.9K VCSEL demonstrates 100 Gbps PAM-4 optical data transmission. Appl Phys Lett, 2022, 121, 011102 doi: 10.1063/5.0095321[14] Jiang G Q, Zhang Q H, Zhao J Y, et al. Comprehensive measurement of the near-infrared refractive index of GaAs at cryogenic temperatures. Opt Lett, 2023, 48, 3507 doi: 10.1364/OL.491357[15] Zielińska A, Musiał A, Wyborski P, et al. Temperature dependence of refractive indices of Al0.9Ga0.1As and In0.53Al0.1Ga0.37As in the telecommunication spectral range. Opt Express, 2022, 30, 20225 doi: 10.1364/OE.457952[16] Elshaari A W, Zadeh I E, Jöns K D, et al. Thermo-optic characterization of silicon nitride resonators for cryogenic photonic circuits. IEEE Photonics J, 2016, 8, 2701009 doi: 10.1109/JPHOT.2016.2561622[17] Coldren L A, Corzine S W, Mašanović M L. Diode lasers and photonic integrated circuits. Hoboken: Wiley, 2012 -
Proportional views