J. Semicond. > 2024, Volume 45 > Issue 10 > 102401

ARTICLES

Single-fundamental-mode cryogenic (3.6 K) 850-nm oxide-confined VCSEL

Anjin Liu1, 2, , Chenxi Hao1, 2, Jingyu Huo3, Hailong Han3, Minglu Wang1, 2, Bao Tang4, Lingyun Li3, Lixing You3 and Wanhua Zheng2, 5

+ Author Affiliations

 Corresponding author: Anjin Liu, liuanjin@semi.ac.cn

DOI: 10.1088/1674-4926/24070025CSTR: 32376.14.1674-4926.24070025

PDF

Turn off MathJax

Abstract: Cryogenic oxide-confined vertical-cavity surface-emitting laser (VCSEL) has promising application in cryogenic optical interconnect for cryogenic computing. In this paper, we demonstrate a cryogenic 850-nm oxide-confined VCSEL at around 4 K. The cryogenic VCSEL with an optical oxide aperture of 6.5 μm in diameter can operate in single fundamental mode with a side-mode suppression-ratio of 36 dB at 3.6 K, and the fiber-coupled output power reaches 1 mW at 5 mA. The small signal modulation measurements at 298 and 292 K show the fabricated VCSEL has the potential to achieve a high modulation bandwidth at cryogenic temperature.

Key words: VCSELcryogenic temperaturecryogenic computingoptical interconnect



[1]
Holmes D S, Ripple A L, Manheimer M A. Energy-efficient superconducting computing-power budgets and requirements. IEEE Trans Appl Supercond, 2013, 23, 1701610 doi: 10.1109/TASC.2013.2244634
[2]
Superconducting Technology Assessment, Nat. Secur. Agency, Office Corporate Assessments, Fort Meade, MD, USA, Aug. 2005
[3]
Liu A J, Wolf P, Lott J A, et al. Vertical-cavity surface-emitting lasers for data communication and sensing. Photon Res, 2019, 7, 121 doi: 10.1364/PRJ.7.000121
[4]
Goncher G, Lu B, Luo W L, et al. Cryogenic operation of AlGaAs-GaAs vertical-cavity surface-emitting lasers at temperatures from 200 K to 6 K. IEEE Photon Technol Lett, 1996, 8, 316 doi: 10.1109/68.481102
[5]
Serkland D K, Geib K M, Peake G M, et al. 850-nm VCSELs optimized for cryogenic data transmission. Proc SPIE, 2012, 8276, 82760S doi: 10.1117/12.909590
[6]
Fu W, Wang H L, Wu H, et al. Cryogenic 50 GHz VCSEL for sub-100 fJ/bit optical link. 2020 IEEE Photonics Conference (IPC), 2020 doi: 10.1109/IPC47351.2020.9252266
[7]
Fu W N, Wu H N, Feng M. Superconducting processor modulated VCSELs for 4K high-speed optical data link. IEEE J Quantum Electron, 2022, 58, 8000208 doi: 10.1109/JQE.2022.3149512
[8]
Wu H, Fu W, Liu Z, et al. Cryogenic oxide-VCSEL at 2.8 K demonstrates record bandwidth f-3dB > 50 GHz, Pout > 14 mW and PAM-4 data rate up to 128 Gb/s. Proc Opt Fiber Commun Conf Exhibit (OFC), 2024, M2D. 2
[9]
Liu A J, Tang B, Li Z Y, et al. 70 Gbps PAM-4 850-nm oxide-confined VCSEL without equalization and pre-emphasis. J Semicond, 2024, 45, 050501 doi: 10.1088/1674-4926/45/5/050501
[10]
Lu B, Lu Y C, Cheng J, et al. Gigabit-per-second cryogenic optical link using optimized low-temperature AlGaAs-GaAs vertical-cavity surface-emitting lasers. IEEE J Quantum Electron, 1996, 32, 1347 doi: 10.1109/3.511547
[11]
Zhou P, Lu B, Cheng J L, et al. Vertical-cavity surface-emitting lasers with thermally stable electrical characteristics. J Appl Phys, 1995, 77, 2264 doi: 10.1063/1.358813
[12]
Wu H, Fu W, Feng M, et al. 2.6K VCSEL data link for cryogenic computing. Appl Phys Lett, 2021, 119, 041101 doi: 10.1063/5.0054128
[13]
Wu H N, Fu W N, Wu D F, et al. 2.9K VCSEL demonstrates 100 Gbps PAM-4 optical data transmission. Appl Phys Lett, 2022, 121, 011102 doi: 10.1063/5.0095321
[14]
Jiang G Q, Zhang Q H, Zhao J Y, et al. Comprehensive measurement of the near-infrared refractive index of GaAs at cryogenic temperatures. Opt Lett, 2023, 48, 3507 doi: 10.1364/OL.491357
[15]
Zielińska A, Musiał A, Wyborski P, et al. Temperature dependence of refractive indices of Al0.9Ga0.1As and In0.53Al0.1Ga0.37As in the telecommunication spectral range. Opt Express, 2022, 30, 20225 doi: 10.1364/OE.457952
[16]
Elshaari A W, Zadeh I E, Jöns K D, et al. Thermo-optic characterization of silicon nitride resonators for cryogenic photonic circuits. IEEE Photonics J, 2016, 8, 2701009 doi: 10.1109/JPHOT.2016.2561622
[17]
Coldren L A, Corzine S W, Mašanović M L. Diode lasers and photonic integrated circuits. Hoboken: Wiley, 2012
Fig. 1.  (Color online) (a) Cross-sectional schematic of the cryogenic VCSEL structure. (b) Packaged cryogenic VCSEL mounted in a cryostat.

Fig. 2.  (Color online) Schematic of the temperature-dependent misalignment between the gain peak and the F−P dip.

Fig. 3.  (Color online) (a) Measured L−I−V curves of the cryogenic VCSEL at RT (298 K). (b) Measured L−I−V curve of the cryogenic VCSEL at 3.6 K. (c) Lasing spectra of the cryogenic VCSEL at 5 mA within the temperature range from 298 to 3.6 K. (d) Lasing spectra of the cryogenic VCSEL under different currents at 3.6 K. (e) Wavelengths of the fundamental mode of the cryogenic VCSEL at 5 mA under different temperatures. (f) Wavelengths of the fundamental mode of the cryogenic VCSEL at 3.6 K under different currents.

Fig. 4.  (Color online) (a) Small signal responses S21 of the VCSEL at RT (298 K). The inset shows the VCSEL chip mounted on a carrier with GSG pads. (b) Small signal responses S21 of the VCSEL at 292 K.

[1]
Holmes D S, Ripple A L, Manheimer M A. Energy-efficient superconducting computing-power budgets and requirements. IEEE Trans Appl Supercond, 2013, 23, 1701610 doi: 10.1109/TASC.2013.2244634
[2]
Superconducting Technology Assessment, Nat. Secur. Agency, Office Corporate Assessments, Fort Meade, MD, USA, Aug. 2005
[3]
Liu A J, Wolf P, Lott J A, et al. Vertical-cavity surface-emitting lasers for data communication and sensing. Photon Res, 2019, 7, 121 doi: 10.1364/PRJ.7.000121
[4]
Goncher G, Lu B, Luo W L, et al. Cryogenic operation of AlGaAs-GaAs vertical-cavity surface-emitting lasers at temperatures from 200 K to 6 K. IEEE Photon Technol Lett, 1996, 8, 316 doi: 10.1109/68.481102
[5]
Serkland D K, Geib K M, Peake G M, et al. 850-nm VCSELs optimized for cryogenic data transmission. Proc SPIE, 2012, 8276, 82760S doi: 10.1117/12.909590
[6]
Fu W, Wang H L, Wu H, et al. Cryogenic 50 GHz VCSEL for sub-100 fJ/bit optical link. 2020 IEEE Photonics Conference (IPC), 2020 doi: 10.1109/IPC47351.2020.9252266
[7]
Fu W N, Wu H N, Feng M. Superconducting processor modulated VCSELs for 4K high-speed optical data link. IEEE J Quantum Electron, 2022, 58, 8000208 doi: 10.1109/JQE.2022.3149512
[8]
Wu H, Fu W, Liu Z, et al. Cryogenic oxide-VCSEL at 2.8 K demonstrates record bandwidth f-3dB > 50 GHz, Pout > 14 mW and PAM-4 data rate up to 128 Gb/s. Proc Opt Fiber Commun Conf Exhibit (OFC), 2024, M2D. 2
[9]
Liu A J, Tang B, Li Z Y, et al. 70 Gbps PAM-4 850-nm oxide-confined VCSEL without equalization and pre-emphasis. J Semicond, 2024, 45, 050501 doi: 10.1088/1674-4926/45/5/050501
[10]
Lu B, Lu Y C, Cheng J, et al. Gigabit-per-second cryogenic optical link using optimized low-temperature AlGaAs-GaAs vertical-cavity surface-emitting lasers. IEEE J Quantum Electron, 1996, 32, 1347 doi: 10.1109/3.511547
[11]
Zhou P, Lu B, Cheng J L, et al. Vertical-cavity surface-emitting lasers with thermally stable electrical characteristics. J Appl Phys, 1995, 77, 2264 doi: 10.1063/1.358813
[12]
Wu H, Fu W, Feng M, et al. 2.6K VCSEL data link for cryogenic computing. Appl Phys Lett, 2021, 119, 041101 doi: 10.1063/5.0054128
[13]
Wu H N, Fu W N, Wu D F, et al. 2.9K VCSEL demonstrates 100 Gbps PAM-4 optical data transmission. Appl Phys Lett, 2022, 121, 011102 doi: 10.1063/5.0095321
[14]
Jiang G Q, Zhang Q H, Zhao J Y, et al. Comprehensive measurement of the near-infrared refractive index of GaAs at cryogenic temperatures. Opt Lett, 2023, 48, 3507 doi: 10.1364/OL.491357
[15]
Zielińska A, Musiał A, Wyborski P, et al. Temperature dependence of refractive indices of Al0.9Ga0.1As and In0.53Al0.1Ga0.37As in the telecommunication spectral range. Opt Express, 2022, 30, 20225 doi: 10.1364/OE.457952
[16]
Elshaari A W, Zadeh I E, Jöns K D, et al. Thermo-optic characterization of silicon nitride resonators for cryogenic photonic circuits. IEEE Photonics J, 2016, 8, 2701009 doi: 10.1109/JPHOT.2016.2561622
[17]
Coldren L A, Corzine S W, Mašanović M L. Diode lasers and photonic integrated circuits. Hoboken: Wiley, 2012
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 503 Times PDF downloads: 69 Times Cited by: 0 Times

    History

    Received: 25 July 2024 Revised: 17 August 2024 Online: Accepted Manuscript: 28 August 2024Uncorrected proof: 28 August 2024Published: 15 October 2024

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Anjin Liu, Chenxi Hao, Jingyu Huo, Hailong Han, Minglu Wang, Bao Tang, Lingyun Li, Lixing You, Wanhua Zheng. Single-fundamental-mode cryogenic (3.6 K) 850-nm oxide-confined VCSEL[J]. Journal of Semiconductors, 2024, 45(10): 102401. doi: 10.1088/1674-4926/24070025 ****A J Liu, C X Hao, J Y Huo, H L Han, M L Wang, B Tang, L Y Li, L X You, and W H Zheng, Single-fundamental-mode cryogenic (3.6 K) 850-nm oxide-confined VCSEL[J]. J. Semicond., 2024, 45(10), 102401 doi: 10.1088/1674-4926/24070025
      Citation:
      Anjin Liu, Chenxi Hao, Jingyu Huo, Hailong Han, Minglu Wang, Bao Tang, Lingyun Li, Lixing You, Wanhua Zheng. Single-fundamental-mode cryogenic (3.6 K) 850-nm oxide-confined VCSEL[J]. Journal of Semiconductors, 2024, 45(10): 102401. doi: 10.1088/1674-4926/24070025 ****
      A J Liu, C X Hao, J Y Huo, H L Han, M L Wang, B Tang, L Y Li, L X You, and W H Zheng, Single-fundamental-mode cryogenic (3.6 K) 850-nm oxide-confined VCSEL[J]. J. Semicond., 2024, 45(10), 102401 doi: 10.1088/1674-4926/24070025

      Single-fundamental-mode cryogenic (3.6 K) 850-nm oxide-confined VCSEL

      DOI: 10.1088/1674-4926/24070025
      CSTR: 32376.14.1674-4926.24070025
      More Information
      • Anjin Liu received the Bachelor degree in 2006 from Huazhong University of Science and Technology in China, and the Ph.D. degree in 2011 from Institute of Semiconductors, Chinese Academy of Sciences (CAS). From 2012 to July of 2013, he was a Postdoc Fellow in Fraunhofer HHI in Berlin. In August of 2013, he joined in Prof. Dieter Bimberg’s group in TU Berlin with funding from Alexander von Humboldt foundation. Currently, he is a professor in Institute of Semiconductors, CAS. His research interests include high-speed VCSELs, tunable MEMS-VCSEL, semiconductor lasers, and integrated photonics. He has authored or coauthored 60+ papers in scientific journals and holds 1 issued U.S. and 18 issued Chinese patents. He was the recipient of the Special Prize of President Scholarship for Postgraduate Students by CAS, Excellent Doctoral Dissertation Award by CAS, Alexander von Humboldt Postdoctoral Research Fellowship, and State Technological Invention Award
      • Corresponding author: liuanjin@semi.ac.cn
      • Received Date: 2024-07-25
      • Revised Date: 2024-08-17
      • Available Online: 2024-08-28

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return