Citation: |
Pengzhan Liu, Linning Wang, Jiayao Zhou, Xinijie Mo, Yingze Liang, Jiahao Gou, Ziqian Qi, Ziping Cao, Yongjin Wang. Mobile blue-light communication over a signal optical path using a time-division multiplexing scheme[J]. Journal of Semiconductors, 2025, 46(3): 032402. doi: 10.1088/1674-4926/24080022
****
P Z Liu, L N Wang, J Y Zhou, X J Mo, Y Z Liang, J H Gou, Z Q Qi, Z P Cao, and Y J Wang, Mobile blue-light communication over a signal optical path using a time-division multiplexing scheme[J]. J. Semicond., 2025, 46(3), 032402 doi: 10.1088/1674-4926/24080022
|
Mobile blue-light communication over a signal optical path using a time-division multiplexing scheme
DOI: 10.1088/1674-4926/24080022
CSTR: 32376.14.1674-4926.24080022
More Information-
Abstract
Multiple quantum well (MQW) Ⅲ-nitride diodes that can simultaneously emit and detect light feature an overlapping region between their electroluminescence and responsivity spectra, which allows them to be simultaneously used as both a transmitter and a receiver in a wireless light communication system. Here, we demonstrate a mobile light communication system using a time-division multiplexing (TDM) scheme to achieve bidirectional data transmission via the same optical channel. Two identical blue MQW diodes are defined by software as a transmitter or a receiver. To address the light alignment issue, an image identification module integrated with a gimbal stabilizer is used to automatically detect the locations of moving targets; thus, underwater audio communication is realized via a mobile blue-light TDM communication mode. This approach not only uses a single link but also integrates mobile nodes in a practical network. -
References
[1] Van Deurzen L, Kim E, Pieczulewski N, et al. Using both faces of polar semiconductor wafers for functional devices. Nature, 2024, 634(8037), 334 doi: 10.1038/s41586-024-08199-x[2] Pimputkar S, Speck J S, DenBaars S P, et al. Prospects for LED lighting. Nat Photonics, 2009, 3(4), 180 doi: 10.1038/nphoton.2009.32[3] Wierer J J, David A, Megens M M. Ⅲ-nitride photonic-crystal light-emitting diodes with high extraction efficiency. Nat Photonics, 2009, 3(3), 163 doi: 10.1038/nphoton.2009.21[4] Ren A B, Wang H, Zhang W, et al. Emerging light-emitting diodes for next-generation data communications. Nat Electron, 2021, 4(8), 559 doi: 10.1038/s41928-021-00624-7[5] Oh N, Kim B H, Cho S Y, et al. Double-heterojunction nanorod light-responsive LEDs for display applications. Science, 2017, 355(6325), 616 doi: 10.1126/science.aal2038[6] Xu Z J, Ren J W, Wang C, et al. Equivalent analysis model of a GaN LED used as a receiver. Appl Opt, 2024, 63(12), 3108 doi: 10.1364/AO.516900[7] Stepniak G, Kowalczyk M, Maksymiuk L, et al. Transmission beyond 100 Mbit/s using LED both as a transmitter and receiver. IEEE Photonics Technol Lett, 2015, 27(19), 2067 doi: 10.1109/LPT.2015.2451006[8] Kumar N, Nguyen T T, Lee J, et al. Van der waals semiconductor based omnidirectional bifacial transparent photovoltaic for visual-speech photocommunication. Adv Sci, 2024, 11(7), 2306408 doi: 10.1002/advs.202306408[9] Kowalczyk M, Siuzdak J. Photo-reception properties of common LEDs. Opto Electron Rev, 2017, 25(3), 222 doi: 10.1016/j.opelre.2017.06.009[10] Fandiño J S, Muñoz P, Doménech D, et al. A monolithic integrated photonic microwave filter. Nat Photonics, 2017, 11(2), 124 doi: 10.1038/nphoton.2016.233[11] Stojanović V, Ram R J, Popović M, et al. Monolithic silicon-photonic platforms in state-of-the-art CMOS SOI processes. Opt Express, 2018, 26(10), 13106 doi: 10.1364/OE.26.013106[12] Wei W Q, He A, Yang B, et al. Monolithic integration of embedded Ⅲ-Ⅴ lasers on SOI. Light Sci Appl, 2023, 12(1), 84 doi: 10.1038/s41377-023-01128-z[13] Remis A, Monge-Bartolome L, Paparella M, et al. Unlocking the monolithic integration scenario: Optical coupling between GaSb diode lasers epitaxially grown on patterned Si substrates and passive SiN waveguides. Light Sci Appl, 2023, 12(1), 150 doi: 10.1038/s41377-023-01185-4[14] Zheng Z Y, Zhang L, Song W J, et al. Gallium nitride-based complementary logic integrated circuits. Nat Electron, 2021, 4(8), 595 doi: 10.1038/s41928-021-00611-y[15] Wang Y J, Wang X, Zhu B C, et al. Full-duplex light communication with a monolithic multicomponent system. Light Sci Appl, 2018, 7(1), 83 doi: 10.1038/s41377-018-0083-0[16] Xie M Y, Hu F C, Ma C C, et al. 580-nm-thick vertical-structure light-emitting diode for visible light communication. Appl Phys Lett, 2022, 120(18), 181109 doi: 10.1063/5.0088846[17] Zhang H, Yan J B, Ye Z Q, et al. Monolithic GaN optoelectronic system on a Si substrate. Appl Phys Lett, 2022, 121(18), 181103 doi: 10.1063/5.0125324[18] Dang S P, Amin O, Shihada B, et al. What should 6G be? Nat Electron, 2020, 3(1), 20[19] Pathak P H, Feng X T, Hu P F, et al. Visible light communication, networking, and sensing: A survey, potential and challenges. IEEE Commun Surv Tutor, 2015, 17(4), 2047 doi: 10.1109/COMST.2015.2476474[20] Zhang J L, Wang S J, Ma Z Q, et al. Long-term and real-time high-speed underwater wireless optical communications in deep sea. IEEE Commun Mag, 2024, 62(3), 96 doi: 10.1109/MCOM.001.2300461[21] Xu X Y, Fu Y X, Shi Z R, et al. Stable and self-healing perovskite for high-speed underwater optical wireless communication. J Mater Chem C, 2024, 12(11), 3907 doi: 10.1039/D3TC04809H[22] Zhao C, Hua N, Song J W, et al. Channel-aware low Earth orbit satellite cluster networking for space-to-Earth laser communication: Reliability and bandwidth advantages. Opt Express, 2024, 32(3), 3356 doi: 10.1364/OE.511256[23] Wang G H, Yang F, Song J, et al. Free space optical communication for inter-satellite link: Architecture, potentials and trends. IEEE Commun Mag, 2024, 62(3), 110 doi: 10.1109/MCOM.002.2300024[24] Hoppe D, Biswas A, Srinivasan M, et al. Deep space optical communications technology demonstration. Free-Space Laser Communication and Atmospheric Propagation XXX, 2018, 12877 doi: 10.1117/12.2296426[25] Tian R Y, Wang T, Shen X Y, et al. 108 m underwater wireless optical communication using a 490 nm blue VECSEL and an AOM. Sensors, 2024, 24(8), 2609. doi: 10.3390/s24082609[26] Chow C W, Shiu R J, Liu Y C, et al. Non-flickering 100 m RGB visible light communication transmission based on a CMOS image sensor. Opt Express, 2018, 26(6), 7079 doi: 10.1364/OE.26.007079[27] Yang X Q, Zhang Y F, Hua Y, et al. 50-M/300-Mbps underwater wireless optical communication using incoherent light source. J Light Technol, 2023, 41(22), 6939 doi: 10.1109/JLT.2023.3295343[28] Zhang K K, Sun C M, Shi W, et al. Turbidity−tolerant underwater wireless optical communications using dense blue-green wavelength division multiplexing. Opt Express, 2024, 32(12), 20762 doi: 10.1364/OE.521575[29] Liu P Z, Qi Z Q, Fu J W, et al. Unification of irreversibility and energy diagram theory. ACS Omega, 2023, 8(22), 20004 doi: 10.1021/acsomega.3c02189 -
Supplements
Mobile_blue_light_communication_system.mp4
-
Proportional views