J. Semicond. > 2024, Volume 45 > Issue 12 > 122102

ARTICLES

Growth, characterization, and transport calculation of Ge/SiGe heterojunction: strategy for the growth of undoped Ge quantum wells

Yiwen Zhang1, 2, 3, 4, Jun Deng4, Zonghu Li4, Xinyou Liu4, Haiou Li4, 5, Baochuan Wang4, 5, Jun Luo2, 3, Zhenzhen Kong2, 3, , Gang Cao4, 5, Guoping Guo4, 5, Chao Zhao3 and Guilei Wang2, 4,

+ Author Affiliations

 Corresponding author: Zhenzhen Kong, zhenzhen.kong@bjsamt.org.cn; Guilei Wang, wangguilei@hfnl.cn

DOI: 10.1088/1674-4926/24080034

PDF

Turn off MathJax

Abstract: Ge/SiGe heterostructure quantum wells play a pivotal role in the pursuit of scalable silicon-based qubits. The varying compressive strains within these quantum wells profoundly influence the physical characteristics of the qubits, yet this factor remains largely unexplored, driving our research endeavor. In this study, we utilized RP-CVD (Reduced Pressure Chemical Vapor Deposition) to grow Ge quantum wells with varied compressive strain, proposing growth schemes for lightly-strained (ε = −0.43%) QW (quantum well), standard-strained (ε = −0.61%) QW, and heavily-strained (ε = −1.19%) QW. Through comprehensive material characterization, particularly employing the low-temperature magneto-transport measurements, we derived the percolation densities ranging from 4.7 × 1010 to 14.2 × 1010 cm−2 and mobilities from 3.382 × 105 to 7.301 × 105 cm2∙V−1∙s−1. Combined with the first-principles calculations, our analysis delves into the trends in effective mass and percolation density at low temperatures, shedding light on the impact of quantum effects on band structures and the interplay between structural components and wave functions. This research offers a comprehensive investigation into the intrinsic mechanisms governing complex multi-strained quantum wells, spanning growth, characterization, and computational perspectives, thereby establishing a strategy for the growth of high-quality strained quantum wells.

Key words: germanium quantum wellsRP-CVDmulti-strained quantum wellsmagneto-transporthetero-structure



[1]
Liu Y, Xiong J X, Wang Z, et al. Electric dipole spin resonance induced by hole k-linear Rashba effect in planar Ge. arXiv preprint arXiv: 2106.14684, 2021
[2]
Zhao C, Wang X, Wang W. High-κ dielectric and metal gate. CMOS Past, Present and Future. Amsterdam: Elsevier, 2018, 69
[3]
Scappucci G, Kloeffel C, Zwanenburg F A, et al. The germanium quantum information route. Nat Rev Mater, 2021, 6, 926 doi: 10.1038/s41578-020-00262-z
[4]
Lodari M, Kong O, Rendell M, et al. Lightly strained germanium quantum wells with hole mobility exceeding one million. Appl Phys Lett, 2022, 120, 122104 doi: 10.1063/5.0083161
[5]
Myronov M, Kycia J, Waldron P, et al. Holes outperform electrons in group IV semiconductor materials. Small Sci, 2023, 3, 2200094 doi: 10.1002/smsc.202200094
[6]
Hutchins-Delgado T A, Miller A J, Scott R, et al. Characterization of shallow, undoped Ge/SiGe quantum wells commercially grown on 8-in. (100) Si wafers. ACS Appl Electron Mater, 2022, 4, 4482 doi: 10.1021/acsaelm.2c00733
[7]
Kong Z, Li Z, Cao G, et al. Undoped strained Ge quantum well with ultrahigh mobility of two million. ACS Appl Mater Interfaces, 2023, 15, 28799 doi: 10.1021/acsami.3c03294
[8]
Stehouwer L E A, Tosato A, Degli Esposti D, et al. Germanium wafers for strained quantum wells with low disorder. Appl Phys Lett, 2023, 123, 092101 doi: 10.1063/5.0158262
[9]
Sammak A, Sabbagh D, Hendrickx N W, et al. Shallow and undoped germanium quantum wells: A playground for spin and hybrid quantum technology. Adv Funct Mater, 2019, 29, 1807613 doi: 10.1002/adfm.201807613
[10]
Hendrickx N W, Lawrie W I L, Russ M, et al. A four-qubit germanium quantum processor. Nature, 2021, 591, 580 doi: 10.1038/s41586-021-03332-6
[11]
Li Y X, Kong Z Z, Hou S M, et al. Quantum transport quality of a processed undoped Ge/SiGe heterostructure. Phys Rev B, 2023, 108, 045303 doi: 10.1103/PhysRevB.108.045303
[12]
Ma R L, Li A R, Wang C, et al. Single-spin-qubit geometric gate in a silicon quantum dot. Phys Rev Applied, 2024, 21, 014044 doi: 10.1103/PhysRevApplied.21.014044
[13]
Yoneda J, Takeda K, Otsuka T, et al. A quantum-dot spin qubit with coherence limited by charge noise and fidelity higher than 99.9. Nat Nanotechnol, 2018, 13, 102 doi: 10.1038/s41565-017-0014-x
[14]
Hardy W J, Harris C T, Su Y H, et al. Single and double hole quantum dots in strained Ge/SiGe quantum wells. Nanotechnology, 2019, 30, 215202 doi: 10.1088/1361-6528/ab061e
[15]
Terrazos L A, Marcellina E, Wang Z N, et al. Theory of hole-spin qubits in strained germanium quantum dots. Phys Rev B, 2021, 103, 125201 doi: 10.1103/PhysRevB.103.125201
[16]
Zhang D D, Lu J, Liu Z, et al. Sharp interface of undoped Ge/SiGe quantum well grown by ultrahigh vacuum chemical vapor deposition. Appl Phys Lett, 2022, 121, 022102 doi: 10.1063/5.0097846
[17]
Kang Y, Li Z H, Kong Z Z, et al. Coupling of a hole double quantum dot in planar germanium to a microwave cavity. Phys Rev Applied, 2024, 22, 024054 doi: 10.1103/PhysRevApplied.22.024054
[18]
Jirovec D, Hofmann A, Ballabio A, et al. A singlet-triplet hole spin qubit in planar Ge. Nat Mater, 2021, 20, 1106 doi: 10.1038/s41563-021-01022-2
[19]
Zhang Y W, Li Z H, Zhou Y C, et al. Ultrashallow heavily constrained quantum wells: The cradle for fully electrically controlled and microwave coupled quantum bits. Phys Rev Materials, 2024, 8, 046203 doi: 10.1103/PhysRevMaterials.8.046203
[20]
Berkutov I B, Andrievskii V V, Beliayev E Y, et al. Quantum effects in silicon-germanium p-type heterostructures with quantum wells of different widths. Low Temp Phys, 2023, 49, 59 doi: 10.1063/10.0016476
[21]
Laroche D, Huang S H, Chuang Y, et al. Magneto-transport analysis of an ultra-low-density two-dimensional hole gas in an undoped strained Ge/SiGe heterostructure. Appl Phys Lett, 2016, 108, 233504 doi: 10.1063/1.4953399
[22]
Su Y H, Chuang Y, Liu C Y, et al. Effects of surface tunneling of two-dimensional hole gases in undoped Ge/GeSi heterostructures. Phys Rev Materials, 2017, 1, 044601 doi: 10.1103/PhysRevMaterials.1.044601
[23]
Hartmann J M, Damlencourt J F, Bogumilowicz Y, et al. Reduced pressure-chemical vapor deposition of intrinsic and doped Ge layers on Si(001) for microelectronics and optoelectronics purposes. J Cryst Growth, 2005, 274, 90 doi: 10.1016/j.jcrysgro.2004.10.042
[24]
Newell O. Fractional quantum phenomena of 2DHGs within strained germanium quantum well heterostructures. University of Warwick, 2018
[25]
Ward T, Sánchez A M, Tang M, et al. Design rules for dislocation filters. J Appl Phys, 2014, 116, 063508 doi: 10.1063/1.4892162
[26]
Fitzgerald E A. Dislocations in strained-layer epitaxy: Theory, experiment, and applications. Mater Sci Rep, 1991, 7, 87 doi: 10.1016/0920-2307(91)90006-9
[27]
Ballabio A, Frigerio J, Firoozabadi S, et al. Ge/SiGe parabolic quantum wells. J Phys D: Appl Phys, 2019, 52, 415105 doi: 10.1088/1361-6463/ab2d34
[28]
Alam M M, Hoshi Y, Sawano K. Structural properties of compressive strained Ge channels fabricated on Si (111) and Si (100). Semicond Sci Technol, 2018, 33, 124008 doi: 10.1088/1361-6641/aae575
[29]
Skibitzki O, Zoellner M H, Rovaris F, et al. Reduction of threading dislocation density beyond the saturation limit by optimized reverse grading. Phys Rev Materials, 2020, 4, 103403 doi: 10.1103/PhysRevMaterials.4.103403
[30]
Cheng W J, Liang R R, Xu G B, et al. Fabrication and characterization of a novel Si line tunneling TFET with high drive current. IEEE J Electron Devices Soc, 2826, 8, 336 doi: 10.1109/JEDS.2020.2981974
[31]
Wang G L, Luo J, Qin C L, et al. Integration of highly strained SiGe in source and drain with HK and MG for 22 nm bulk PMOS transistors. Nanoscale Res Lett, 2017, 12, 123 doi: 10.1186/s11671-017-1908-0
[32]
von Känel H, Kummer M, Isella G, et al. Very high hole mobilities in modulation-doped Ge quantum wells grown by low-energy plasma enhanced chemical vapor deposition. Appl Phys Lett, 2002, 80, 2922 doi: 10.1063/1.1470691
[33]
Rößner B, Isella G, von Känel H. Effective mass in remotely doped Ge quantum wells. Appl Phys Lett, 2003, 82, 754 doi: 10.1063/1.1541101
[34]
Pokutnyi S I. Polarizability of germanium quantum dots with spatially separated electrons and holes. Eur Phys J Plus, 2020, 135, 74 doi: 10.1140/epjp/s13360-019-00050-x
[35]
Rančić M J, Hoffman S, Schrade C, et al. Entangling spins in double quantum dots and Majorana bound states. Phys Rev B, 2019, 99, 165306 doi: 10.1103/PhysRevB.99.165306
[36]
Del Vecchio P, Lodari M, Sammak A, et al. Vanishing Zeeman energy in a two-dimensional hole gas. Phys Rev B, 2020, 102, 115304 doi: 10.1103/PhysRevB.102.115304
[37]
Coleridge P T, Stoner R, Fletcher R. Low-field transport coefficients in GaAs/Ga1–xAlxAs heterostructures. Phys Rev B, 1989, 39, 1120 doi: 10.1103/PhysRevB.39.1120
[38]
Winkler R, Papadakis S J, Poortere E P, et al. Spin-orbit coupling in two-dimensional electron and hole systems. Advances in Solid State Physics Volume 41. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, 211
[39]
Miller A J, Brickson M, Hardy W J, et al. Effective out-of-plane g-factor in strained-Ge/SiGe quantum dots. Phys Rev B, 2022, 106, 121402 doi: 10.1103/PhysRevB.106.L121402
[40]
Drichko I L, Dmitriev A A, Malysh V A, et al. Effective g factor of 2D holes in strained Ge quantum wells. J Appl Phys, 2018, 123, 165703 doi: 10.1063/1.5025413
[41]
Mizokuchi R, Maurand R, Vigneau F, et al. Ballistic one-dimensional holes with strong g-factor anisotropy in germanium. Nano Lett, 2018, 18, 4861 doi: 10.1021/acs.nanolett.8b01457
[42]
Ma J L, Zhang H M, Wang X Y, et al. Valence band structure and hole effective mass of uniaxial stressed Germanium. J Comput Electron, 2011, 10, 388 doi: 10.1007/s10825-011-0374-7
[43]
Virgilio M, Grosso G. Type-I alignment and direct fundamental gap in SiGe based heterostructures. J Phys Condens Matter, 2006, 18, 1021 doi: 10.1088/0953-8984/18/3/018
Fig. 1.  (Color online) (a) Quantum well structure diagram. (b) Hall bar structure diagram and test schematic diagram.

Fig. 2.  (Color online) The corresponding range of strains of LS (lightly-strained QW), SS (standard-strained QW), HS (heavily-strained QW) and $ {\Delta E}_{(\mathrm{H}\mathrm{H}-\mathrm{L}\mathrm{H})} $ is calculated using VSAP.

Fig. 3.  (Color online) (a) HRXRD analysis of the lightly-strained QW. The green line shows the quantum well shifting leftward as strain increases. (b) AFM analysis of the lightly-strained QW (10 μm × 10 μm Rq = 2.03 nm).

Fig. 4.  (Color online) SdH oscillation of each sample at near saturation density at 250 mK. (a) Transverse resistance. (b) Longitudinal resistance and fill factor ν.

Fig. 5.  (Color online) Electrical and magneto-transport measurements at 250 mK of Hall-bar shaped HFET. (a) Mobility μ vs carrier density p2DHG. Transport parameters are shown in Table 1. In the local zoom-in of (a), the blue curve corresponds to the fitted curve of mobility μ versus carrier density p at low carrier density, while the red curve corresponds to the fitted curve at high carrier density. (b) Longitudinal conductivity σxx vs carrier density p2DHG. The green curve is fitted by σxx ∝ (p2DHGpp)p, p = 2. The confidence intervals of both fits are larger than 0.999.

Fig. 6.  (Color online) (a) Quantum well structure model. (b) Quantum well barrier energy band model under gate voltage control.

Fig. 7.  (Color online) (a) Correlation curve between barrier layer components and percolation density. (b) Correlation curve between quantum well thickness and percolation density. (c) Correlation curve between quantum well depth and percolation density. (d) A contour map of pp constructed by overlaying our calculated data on the thickness-depth phase diagram.

Fig. 8.  (Color online) The density of tunneling carriers at 250 mK corresponds to (a) a quantum well (QW) depth of 20 nm, where tunneling does not occur; (b) a QW depth of 30 nm, with a very small probability of tunneling; (c) a QW depth of 40 nm, with a significantly higher probability of tunneling.

Fig. 9.  (Color online) The amplitude change is fitted as a function of T, normalized at Δρ0 = Δρ (T0 = 250 mK). The red solid circle corresponds to the HS sample with an effective mass of 0.091 m0; the black solid diamond corresponds to the SS sample with an effective mass of 0.083 m0; and the blue solid circle corresponds to the LS sample with an effective mass of 0.073 m0.

Fig. 10.  (Color online) Mixed transport model of light and heavy hole subbands. (a) Light and heavy hole subbands under strain. (b) Carrier transport mode in which only the heavy hole subband participates under strain. (c) Mixed transport mode of light and heavy hole subbands under strain. (d) State density DOS (density of states) distribution diagram of the Fermi level EF corresponding to the light and heavy hole subbands.

Table 1.   Material key structural parameters and magnetic transport test results.

Key structural parameters
Layer LS QW SS QW HS QW
QW depth (nm) 22.7 20.2 15.1
QW thickness (nm) 37 36.3 24.07
Strain (%) −0.43 −0.61 −1.19
Magnetic-transport data
Layer LS QW SS QW HS QW
Mobility (cm2∙V−1∙s−1) 73.01 × 104 53.47 × 104 33.82 × 104
βhigh 2.18 0.40 1.27
βlow 11.51 16.95 3.46
m* (m0) 0.073 0.083 0.091
pp (cm−2) 4.7 × 1010 5.4 × 1010 14.24 × 1010
g* 11.09 9.86 8.3
α 20.22 28.93 33.33
DownLoad: CSV
[1]
Liu Y, Xiong J X, Wang Z, et al. Electric dipole spin resonance induced by hole k-linear Rashba effect in planar Ge. arXiv preprint arXiv: 2106.14684, 2021
[2]
Zhao C, Wang X, Wang W. High-κ dielectric and metal gate. CMOS Past, Present and Future. Amsterdam: Elsevier, 2018, 69
[3]
Scappucci G, Kloeffel C, Zwanenburg F A, et al. The germanium quantum information route. Nat Rev Mater, 2021, 6, 926 doi: 10.1038/s41578-020-00262-z
[4]
Lodari M, Kong O, Rendell M, et al. Lightly strained germanium quantum wells with hole mobility exceeding one million. Appl Phys Lett, 2022, 120, 122104 doi: 10.1063/5.0083161
[5]
Myronov M, Kycia J, Waldron P, et al. Holes outperform electrons in group IV semiconductor materials. Small Sci, 2023, 3, 2200094 doi: 10.1002/smsc.202200094
[6]
Hutchins-Delgado T A, Miller A J, Scott R, et al. Characterization of shallow, undoped Ge/SiGe quantum wells commercially grown on 8-in. (100) Si wafers. ACS Appl Electron Mater, 2022, 4, 4482 doi: 10.1021/acsaelm.2c00733
[7]
Kong Z, Li Z, Cao G, et al. Undoped strained Ge quantum well with ultrahigh mobility of two million. ACS Appl Mater Interfaces, 2023, 15, 28799 doi: 10.1021/acsami.3c03294
[8]
Stehouwer L E A, Tosato A, Degli Esposti D, et al. Germanium wafers for strained quantum wells with low disorder. Appl Phys Lett, 2023, 123, 092101 doi: 10.1063/5.0158262
[9]
Sammak A, Sabbagh D, Hendrickx N W, et al. Shallow and undoped germanium quantum wells: A playground for spin and hybrid quantum technology. Adv Funct Mater, 2019, 29, 1807613 doi: 10.1002/adfm.201807613
[10]
Hendrickx N W, Lawrie W I L, Russ M, et al. A four-qubit germanium quantum processor. Nature, 2021, 591, 580 doi: 10.1038/s41586-021-03332-6
[11]
Li Y X, Kong Z Z, Hou S M, et al. Quantum transport quality of a processed undoped Ge/SiGe heterostructure. Phys Rev B, 2023, 108, 045303 doi: 10.1103/PhysRevB.108.045303
[12]
Ma R L, Li A R, Wang C, et al. Single-spin-qubit geometric gate in a silicon quantum dot. Phys Rev Applied, 2024, 21, 014044 doi: 10.1103/PhysRevApplied.21.014044
[13]
Yoneda J, Takeda K, Otsuka T, et al. A quantum-dot spin qubit with coherence limited by charge noise and fidelity higher than 99.9. Nat Nanotechnol, 2018, 13, 102 doi: 10.1038/s41565-017-0014-x
[14]
Hardy W J, Harris C T, Su Y H, et al. Single and double hole quantum dots in strained Ge/SiGe quantum wells. Nanotechnology, 2019, 30, 215202 doi: 10.1088/1361-6528/ab061e
[15]
Terrazos L A, Marcellina E, Wang Z N, et al. Theory of hole-spin qubits in strained germanium quantum dots. Phys Rev B, 2021, 103, 125201 doi: 10.1103/PhysRevB.103.125201
[16]
Zhang D D, Lu J, Liu Z, et al. Sharp interface of undoped Ge/SiGe quantum well grown by ultrahigh vacuum chemical vapor deposition. Appl Phys Lett, 2022, 121, 022102 doi: 10.1063/5.0097846
[17]
Kang Y, Li Z H, Kong Z Z, et al. Coupling of a hole double quantum dot in planar germanium to a microwave cavity. Phys Rev Applied, 2024, 22, 024054 doi: 10.1103/PhysRevApplied.22.024054
[18]
Jirovec D, Hofmann A, Ballabio A, et al. A singlet-triplet hole spin qubit in planar Ge. Nat Mater, 2021, 20, 1106 doi: 10.1038/s41563-021-01022-2
[19]
Zhang Y W, Li Z H, Zhou Y C, et al. Ultrashallow heavily constrained quantum wells: The cradle for fully electrically controlled and microwave coupled quantum bits. Phys Rev Materials, 2024, 8, 046203 doi: 10.1103/PhysRevMaterials.8.046203
[20]
Berkutov I B, Andrievskii V V, Beliayev E Y, et al. Quantum effects in silicon-germanium p-type heterostructures with quantum wells of different widths. Low Temp Phys, 2023, 49, 59 doi: 10.1063/10.0016476
[21]
Laroche D, Huang S H, Chuang Y, et al. Magneto-transport analysis of an ultra-low-density two-dimensional hole gas in an undoped strained Ge/SiGe heterostructure. Appl Phys Lett, 2016, 108, 233504 doi: 10.1063/1.4953399
[22]
Su Y H, Chuang Y, Liu C Y, et al. Effects of surface tunneling of two-dimensional hole gases in undoped Ge/GeSi heterostructures. Phys Rev Materials, 2017, 1, 044601 doi: 10.1103/PhysRevMaterials.1.044601
[23]
Hartmann J M, Damlencourt J F, Bogumilowicz Y, et al. Reduced pressure-chemical vapor deposition of intrinsic and doped Ge layers on Si(001) for microelectronics and optoelectronics purposes. J Cryst Growth, 2005, 274, 90 doi: 10.1016/j.jcrysgro.2004.10.042
[24]
Newell O. Fractional quantum phenomena of 2DHGs within strained germanium quantum well heterostructures. University of Warwick, 2018
[25]
Ward T, Sánchez A M, Tang M, et al. Design rules for dislocation filters. J Appl Phys, 2014, 116, 063508 doi: 10.1063/1.4892162
[26]
Fitzgerald E A. Dislocations in strained-layer epitaxy: Theory, experiment, and applications. Mater Sci Rep, 1991, 7, 87 doi: 10.1016/0920-2307(91)90006-9
[27]
Ballabio A, Frigerio J, Firoozabadi S, et al. Ge/SiGe parabolic quantum wells. J Phys D: Appl Phys, 2019, 52, 415105 doi: 10.1088/1361-6463/ab2d34
[28]
Alam M M, Hoshi Y, Sawano K. Structural properties of compressive strained Ge channels fabricated on Si (111) and Si (100). Semicond Sci Technol, 2018, 33, 124008 doi: 10.1088/1361-6641/aae575
[29]
Skibitzki O, Zoellner M H, Rovaris F, et al. Reduction of threading dislocation density beyond the saturation limit by optimized reverse grading. Phys Rev Materials, 2020, 4, 103403 doi: 10.1103/PhysRevMaterials.4.103403
[30]
Cheng W J, Liang R R, Xu G B, et al. Fabrication and characterization of a novel Si line tunneling TFET with high drive current. IEEE J Electron Devices Soc, 2826, 8, 336 doi: 10.1109/JEDS.2020.2981974
[31]
Wang G L, Luo J, Qin C L, et al. Integration of highly strained SiGe in source and drain with HK and MG for 22 nm bulk PMOS transistors. Nanoscale Res Lett, 2017, 12, 123 doi: 10.1186/s11671-017-1908-0
[32]
von Känel H, Kummer M, Isella G, et al. Very high hole mobilities in modulation-doped Ge quantum wells grown by low-energy plasma enhanced chemical vapor deposition. Appl Phys Lett, 2002, 80, 2922 doi: 10.1063/1.1470691
[33]
Rößner B, Isella G, von Känel H. Effective mass in remotely doped Ge quantum wells. Appl Phys Lett, 2003, 82, 754 doi: 10.1063/1.1541101
[34]
Pokutnyi S I. Polarizability of germanium quantum dots with spatially separated electrons and holes. Eur Phys J Plus, 2020, 135, 74 doi: 10.1140/epjp/s13360-019-00050-x
[35]
Rančić M J, Hoffman S, Schrade C, et al. Entangling spins in double quantum dots and Majorana bound states. Phys Rev B, 2019, 99, 165306 doi: 10.1103/PhysRevB.99.165306
[36]
Del Vecchio P, Lodari M, Sammak A, et al. Vanishing Zeeman energy in a two-dimensional hole gas. Phys Rev B, 2020, 102, 115304 doi: 10.1103/PhysRevB.102.115304
[37]
Coleridge P T, Stoner R, Fletcher R. Low-field transport coefficients in GaAs/Ga1–xAlxAs heterostructures. Phys Rev B, 1989, 39, 1120 doi: 10.1103/PhysRevB.39.1120
[38]
Winkler R, Papadakis S J, Poortere E P, et al. Spin-orbit coupling in two-dimensional electron and hole systems. Advances in Solid State Physics Volume 41. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, 211
[39]
Miller A J, Brickson M, Hardy W J, et al. Effective out-of-plane g-factor in strained-Ge/SiGe quantum dots. Phys Rev B, 2022, 106, 121402 doi: 10.1103/PhysRevB.106.L121402
[40]
Drichko I L, Dmitriev A A, Malysh V A, et al. Effective g factor of 2D holes in strained Ge quantum wells. J Appl Phys, 2018, 123, 165703 doi: 10.1063/1.5025413
[41]
Mizokuchi R, Maurand R, Vigneau F, et al. Ballistic one-dimensional holes with strong g-factor anisotropy in germanium. Nano Lett, 2018, 18, 4861 doi: 10.1021/acs.nanolett.8b01457
[42]
Ma J L, Zhang H M, Wang X Y, et al. Valence band structure and hole effective mass of uniaxial stressed Germanium. J Comput Electron, 2011, 10, 388 doi: 10.1007/s10825-011-0374-7
[43]
Virgilio M, Grosso G. Type-I alignment and direct fundamental gap in SiGe based heterostructures. J Phys Condens Matter, 2006, 18, 1021 doi: 10.1088/0953-8984/18/3/018
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 576 Times PDF downloads: 96 Times Cited by: 0 Times

    History

    Received: 23 August 2024 Revised: 25 September 2024 Online: Accepted Manuscript: 22 October 2024Uncorrected proof: 30 October 2024Published: 15 December 2024

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Yiwen Zhang, Jun Deng, Zonghu Li, Xinyou Liu, Haiou Li, Baochuan Wang, Jun Luo, Zhenzhen Kong, Gang Cao, Guoping Guo, Chao Zhao, Guilei Wang. Growth, characterization, and transport calculation of Ge/SiGe heterojunction: strategy for the growth of undoped Ge quantum wells[J]. Journal of Semiconductors, 2024, 45(12): 122102. doi: 10.1088/1674-4926/24080034 ****Y W Zhang, J Deng, Z H Li, X Y Liu, H O Li, B C Wang, J Luo, Z Z Kong, G Cao, G P Guo, C Zhao, and G L Wang, Growth, characterization, and transport calculation of Ge/SiGe heterojunction: strategy for the growth of undoped Ge quantum wells[J]. J. Semicond., 2024, 45(12), 122102 doi: 10.1088/1674-4926/24080034
      Citation:
      Yiwen Zhang, Jun Deng, Zonghu Li, Xinyou Liu, Haiou Li, Baochuan Wang, Jun Luo, Zhenzhen Kong, Gang Cao, Guoping Guo, Chao Zhao, Guilei Wang. Growth, characterization, and transport calculation of Ge/SiGe heterojunction: strategy for the growth of undoped Ge quantum wells[J]. Journal of Semiconductors, 2024, 45(12): 122102. doi: 10.1088/1674-4926/24080034 ****
      Y W Zhang, J Deng, Z H Li, X Y Liu, H O Li, B C Wang, J Luo, Z Z Kong, G Cao, G P Guo, C Zhao, and G L Wang, Growth, characterization, and transport calculation of Ge/SiGe heterojunction: strategy for the growth of undoped Ge quantum wells[J]. J. Semicond., 2024, 45(12), 122102 doi: 10.1088/1674-4926/24080034

      Growth, characterization, and transport calculation of Ge/SiGe heterojunction: strategy for the growth of undoped Ge quantum wells

      DOI: 10.1088/1674-4926/24080034
      More Information
      • Yiwen Zhang is a PhD student at University of Chinese Academy of Sciences under the supervision of Prof. Guilei Wang, Prof. Jun Luo and Prof. Chao Zhao. His research focuses on the growth of Ge/SiGe heterojunction quantum wells and quantum computing devices
      • Guilei Wang received his Bachelor's degree in 2005 and his PhD in 2016 from the University of Chinese Academy of Sciences. He has been worked as a professor at the Integrated Circuit Advanced Process Center at the Chinese Academy of Sciences until 2021. In October 2021, he joined the Beijing Superstring Academy of Memory Technology as a full professor. His research interests are focused on new materials, devices, and process integration for the IC industry
      • Corresponding author: zhenzhen.kong@bjsamt.org.cnwangguilei@hfnl.cn
      • Received Date: 2024-08-23
      • Revised Date: 2024-09-25
      • Available Online: 2024-10-22

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return