Citation: |
Haixing Meng, Ying Li, Guozhen Shen. A flexible active-matrix X-ray detector based on two-dimensional material backplane[J]. Journal of Semiconductors, 2025, 46(3): 030402. doi: 10.1088/1674-4926/25020801
****
H X Meng, Y Li, and G Z Shen, A flexible active-matrix X-ray detector based on two-dimensional material backplane[J]. J. Semicond., 2025, 46(3), 030402 doi: 10.1088/1674-4926/25020801
|
A flexible active-matrix X-ray detector based on two-dimensional material backplane
DOI: 10.1088/1674-4926/25020801
CSTR: 32376.14.1674-4926.25020801
More Information-
References
[1] Zhao J, Zhao L, Deng Y, et al. Perovskite-filled membranes for flexible and large-area direct-conversion X-ray detector arrays. Nat Photonics, 2020, 14, 612 doi: 10.1038/s41566-020-0678-x[2] He Y, Song J, Li M, et al. Perovskite computed tomography imager and three-dimensional reconstruction. Nat Photonics, 2024, 18, 1052 doi: 10.1038/s41566-024-01506-y[3] Wei H, Fang Y, Mulligan P, et al. Sensitive X-ray detectors made of methylammonium lead tribromide perovskite single crystals. Nat Photonics, 2016, 10, 333 doi: 10.1038/nphoton.2016.41[4] Kamiya T, Nomura K, Hosono H. Present status of amorphous In-Ga-Zn-O thin-film transistors. Sci Technol Adv Mater, 2010, 11, 044305 doi: 10.1088/1468-6996/11/4/044305[5] Li G, Wang Y, Huang L, et al. Research progress of high-sensitivity perovskite photodetectors: A review of photodetectors: noise, structure, and materials. ACS Appl Electron Mater, 2022, 4, 1485 doi: 10.1021/acsaelm.1c01349[6] Su Y, Ma W, Yang Y. Perovskite semiconductors for direct X-ray detection and imaging. J Semicond, 2020, 5, 051204 doi: 10.1088/1674-4926/41/5/051204[7] Yuan P, Zhang L, Zhu M, et al. Perovskite films for X-ray detection. J Semicond, 2022, 43, 070202. doi: 10.1088/1674-4926/43/7/070202[8] Li H, Song J, Pan W, et al. Sensitive and stable 2D perovskite single-crystal X-ray. Adv Mater, 2020, 32, 2003790 doi: 10.1002/adma.202003790[9] Kim Y, Kim K, Son D Y, et al. Printable organometallic perovskite enables large-area, low-dose X-ray imaging. Nature, 2017, 550, 87 doi: 10.1038/nature24032[10] Hwangbo S, Hu L, Hoang A T, et al. Wafer-scale monolithic integration of full-colour micro-LED display using MoS2 transistor. Nat Nanotechnol, 2022, 17, 500 doi: 10.1038/s41565-022-01102-7[11] Dodda A, Jayachandran D, Pannone A, et al. Active pixel sensor matrix based on monolayer MoS2 phototransistor array. Nat Mater, 2022, 21, 1379 doi: 10.1038/s41563-022-01398-9[12] Park Y J, Sharma B K, Shinde S M, et al. All MoS2-based large area, skin-attachable active-matrix tactile sensor. ACS Nano, 2019, 13, 3023 doi: 10.1021/acsnano.8b07995[13] Cui X, Lee G H, Kim Y, et al. Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform. Nat Nanotechnol, 2015, 10, 534 doi: 10.1038/nnano.2015.70[14] Choi C, Choi M K, Liu S, et al. Human eye-inspired soft optoelectronic device using high-density MoS2-graphene curved image sensor array. Nat Commun, 2017, 8, 1664 doi: 10.1038/s41467-017-01824-6[15] Kang J H, Shin H, Kim K S, et al. Monolithic 3D integration of 2D materials-based electronics towards ultimate edge computing solutions. Nat Mater, 2023, 22, 1470 doi: 10.1038/s41563-023-01704-z[16] Kim B J, Shao B, Hoang A T, et al. A flexible active-matrix X-ray detector with a backplane based on two-dimensional materials. Nat Electronics, 2025 doi: 10.1038/s41928-024-01317-7[17] van Breemen A J, Simon M, Tousignant O, et al. Curved digital X-ray detectors. npj Flex Electron, 2020, 4, 22 doi: 10.1038/s41528-020-00084-7[18] Piotrowski I, Kulcenty K, Suchorka W M, et al. Carcinogenesis induced by low-dose radiation. Radiol Oncol, 2017, 51, 369 doi: 10.1515/raon-2017-0044 -
Proportional views