Citation: |
Li Ma, Hongliang Zhu, Song Liang, Baojun Wang, Can Zhang, Lingjuan Zhao, Jing Bian, Minghua Chen. A 1.55-μm laser array monolithically integrated with an MMI combiner[J]. Journal of Semiconductors, 2013, 34(4): 044007. doi: 10.1088/1674-4926/34/4/044007
****
L Ma, H L Zhu, S Liang, B J Wang, C Zhang, L J Zhao, J Bian, M H Chen. A 1.55-μm laser array monolithically integrated with an MMI combiner[J]. J. Semicond., 2013, 34(4): 044007. doi: 10.1088/1674-4926/34/4/044007.
|
A 1.55-μm laser array monolithically integrated with an MMI combiner
DOI: 10.1088/1674-4926/34/4/044007
More Information
-
Abstract
The monolithic integration of four 1.55-μm range InGaAsP/InP distributed feedback lasers with a 4×1 multimode-interference (MMI) optical combiner using the varied width ridge method is proposed and demonstrated. The average output power is 1.5 mW when the current of LD is 100 mA and the threshold current is 30-35 mA at 25℃. The lasing wavelength is 1.55-μm range and 40 dB sidemode suppression ratio is obtained. The four channels can operate separately or simultaneously.-
Keywords:
- DFB laser array,
- varied width ridge,
- monolithic integration
-
References
[1] Yu L, Zhang J, Wang W, et al. Wavelength tuning in two-section distributed Bragg reflector laser by selective intermixing of InGaAsP-InGaAsP quantum well structure. Chinese Journal of Semiconductors, 2003, 24(9):903[2] Doerr C R, Joyner C H, Stulz L W, et al. Multifrequency laser having integrated amplified output coupler for high-extinction-ratio modulation with single-mode behavior. IEEE Photonics Technol Lett, 1998, 10(10):1374 doi: 10.1109/68.720265[3] Zhu H L, Xu X D, Wang H, et al. The study of distributed feedback laser arrays based on sampled gratings. Journal of Optoelectronics Laser, 2010, 21(9):1280[4] Ryu S W, Kim J. An asymmetric sampled laser array. ETRI, 2002, 24(5):341 doi: 10.4218/etrij.02.0102.0502[5] Park K H, Leem Y A, Yee D S, et al. Self-pulsation in multi-section distributed feedback laser diode with a novel dual grating structure. ETRI, 2003, 25(3):149 doi: 10.4218/etrij.03.0102.0315[6] Kudo K, Yashiki K, Sasaki T, et al. 1.55-μm wavelength-selectable microarray DFB-LD's with monolithically integrated MMI combiner, SOA, and EA-modulator. IEEE Photonics Technol Lett, 2000, 12(3):242 doi: 10.1109/68.826901[7] Yashiki K, Sato K, Morimoto T, et al. Wavelength-selectable light sources fabricated using advanced microarray-selective epitaxy. IEEE Photonics Technol Lett, 2004, 16(7):1619 doi: 10.1109/LPT.2004.828544[8] Nunoya N, Ishii H, Kawaguchi Y, et al. Tunable distributed amplification (TDA-) DFB laser with asymmetric structure. IEEE J Sel Topics Quantum Electron, 2011, 17(6):1505 doi: 10.1109/JSTQE.2011.2123083[9] Nunoya N, Ishii H, Kawaguchi Y, et al. Wide-band tuning of tunable distributed amplification distributed feedback laser array. Electron Lett, 2008, 44(3):205 doi: 10.1049/el:20083621[10] Wang H, Zhu H L, Jia L H, et al. Design and performance of a complex-coupled DFB laser with grating laser and its application to multi-wavelength sampled grating. Journal of Semiconductors, 2009, 30(2):024003 doi: 10.1088/1674-4926/30/2/024003[11] Dai Y, Wu K, Wu J, et al. Design of a monolithic tunable laser based on equivalent-chirp grating reflectors. Optics Letters, 2010, 35(23):3880 doi: 10.1364/OL.35.003880[12] Kong D H, Zhu H L, Liang S, et al. All-optical clock recovery using a ridge width varied two-section partly gain-coupled DFB self-pulsation laser. Optics Communications, 2010, 283(20):3970 doi: 10.1016/j.optcom.2010.06.022[13] Minford W J, Korotky S K, Alferness R D. Low-loss Ti:LiNbO3 waveguide bends at λ=1.3μm. IEEE Journal of Quantum Electron, 1992, 18(10):1802[14] Ma L, Zhu H L, Chen M H. Design and fabrication of a 1-by-4 multimode interference splitter. Proc SPIE, 2012:8267[15] Tsuruoka K, Kobayashi R, Ohsawa Y, et al. Four-channel 10-Gb/s operation of AlGaInAs-MQW-BH-DFB-LD array for 1.3-μm CWDM systems. IEEE J Quantum Electron, 2005, 11(5):1169 doi: 10.1109/JSTQE.2005.853844 -
Proportional views