Citation: |
Hongfei Yao, Yuxiong Cao, Danyu Wu, Xiaoxi Ning, Yongbo Su, Zhi Jin. A 16.9 dBm InP DHBT W-band power amplifier with more than 20 dB gain[J]. Journal of Semiconductors, 2013, 34(7): 075005. doi: 10.1088/1674-4926/34/7/075005
****
H F Yao, Y X Cao, D Y Wu, X X Ning, Y B Su, Z Jin. A 16.9 dBm InP DHBT W-band power amplifier with more than 20 dB gain[J]. J. Semicond., 2013, 34(7): 075005. doi: 10.1088/1674-4926/34/7/075005.
|
A 16.9 dBm InP DHBT W-band power amplifier with more than 20 dB gain
DOI: 10.1088/1674-4926/34/7/075005
More Information
-
Abstract
A two-stage MMIC power amplifier has been realized by use of a 1-μm InP double heterojunction bipolar transistor (DHBT). The cascode structure, low-loss matching networks, and low-parasite cell units enhance the power gain. The optimum load impedance is determined from load-pull simulation. A coplanar waveguide transmission line is adopted for its ease of fabrication. The chip size is 1.5$ \times $1.7 mm2 with the emitter area of 16$ \times $1 μm$ \times $15 μm in the output stage. Measurements show that small signal gain is more than 20 dB over 75.5-84.5 GHz and the saturated power is 16.9 dBm @ 79 GHz with gain of 15.2 dB. The high power gain makes it very suitable for medium power amplification.-
Keywords:
- power amplifier,
- W-band,
- DHBT,
- InP
-
References
[1] Brown A, Brown K, Chen J, et al. W-band GaN power amplifier MMICs. IEEE MTT-S Int Dig, 2011:1 http://ieeexplore.ieee.org/document/5972571/?arnumber=5972571[2] Ingram D L, Chen Y C, Kraus. A 427 mW, 20% compact W-band InP HEMT MMIC power amplifier. IEEE RFIC Symp, 1999:95 http://ieeexplore.ieee.org/document/805247/?arnumber=805247[3] Maas S, Nelson B, Tait D. Intermodulation distortion in heterojunction bipolar transistors. IEEE Trans Microw Theory Tech, 1992, 40(3):442 doi: 10.1109/22.121719[4] Wei Y, Urteaga M, Griffith Z. 75 GHz 80 mW InP DHBT power amplifier. IEEE MTT-S Int Dig, 2003:919 http://ieeexplore.ieee.org/document/1212519/[5] Ellis G A, Kurdoghlian A, Bowen R, et al. W-band InP DHBT MMIC power amplifiers. IEEE MTT-S Int Dig, 2004:231 http://ieeexplore.ieee.org/document/1335853/[6] Paidi V K, Griffith Z, Wei Y, et al. G-band (140-220 GHz) and W-band (75-110 GHz) InP DHBT medium power amplifiers. IEEE Trans Microw Theory Tech, 2005, 53(2):598 doi: 10.1109/TMTT.2004.840662[7] O'Sullivan T, Le M, Partyka P, et al. Design of a 70 GHz power amplifier using a digital InP HBT process. IEEE Bipolar/BiCMOS Circuits and Technology Meeting, 2007:214[8] Cao Y X, Su Y B, Wu D Y, et al. A 75 GHz 13.92 dBm InP DHBT cascode power amplifier. J Infrared Millim Wave, 2012, 31(4):294 doi: 10.3724/SP.J.1010.2012.00294[9] Jin Z, Su Y B, Cheng W, et al. High-speed InGaAs/InP double heterostructure bipolar transistor with high breakdown voltage. Chin Phys Lett, 2008, 25(7):2683 doi: 10.1088/0256-307X/25/7/097[10] Jin Z, Su Y B, Cheng W, et al. High current multi-finger InGaAs/InP double heterojunction bipolar transistor with the maximum oscillation frequency 253 GHz. Chin Phys Lett, 2008, 25(8):3075 doi: 10.1088/0256-307X/25/8/091[11] Monzon C. A small dual-frequency transformer in two sections. IEEE Trans Microw Theory Tech, 2003, 51(4):1157 doi: 10.1109/TMTT.2003.809675[12] Cao Y X, Jin Z, Ge J, et al. A symbolically defined InP double heterojunction bipolar transistor large-signal model. Journal of Semiconductors, 2009, 30(12):37 http://www.jos.ac.cn/bdtxbcn/ch/reader/view_abstract.aspx?file_no=09060503&flag=1[13] Bohannan K, Sercu J, Moore J. Demystifying ports $ times $ grounds in ADS momentum. http://www.agilent.com. (20011-08-26)[14] O'Sullivan T. Design of millimeter-wave power amplifiers using InP heterojunction bipolar transistors. San Diego:University of California, 2009 http://escholarship.org/uc/item/0z87t0m5?view=search[15] Ge J, Cao Y X, Wu D Y, et al. A combined model with electro-thermal coupling and electromagnetic simulation for microwave multi-finger InP-based DHBTs. IEEE Trans Electron Devices, 2012, 59(3):673 doi: 10.1109/TED.2011.2177987[16] Wei Y. Wide bandwidth power heterojunction bipolar transistor and amplifiers. Santa Barbara:University of California, 2003[17] Wu Y, Li Y, Li S L. A dual-frequency transformer for complex impedances with two unequal sections. IEEE Microw Wireless Compon Lett, 2009, 19(2):77 doi: 10.1109/LMWC.2008.2011315[18] Freitag R G. A unified analysis of MMIC power amplifier stability. IEEE MTT-S Int Dig, 1992:297 http://ieeexplore.ieee.org/document/187971/?reload=true&arnumber=187971&punumber%3D646[19] Platzker A, Struble W, Hetzler K T. Instabilities diagnosis and the role of K in microwave circuits. IEEE MTT-S Int Dig, 1993:1185 http://ieeexplore.ieee.org/document/277082/?arnumber=277082[20] Struble W, Platzker A. A rigorous yet simple method for determining stability of linear N-port networks. GaAs IC Symp Dig, 1993:1 http://ci.nii.ac.jp/naid/10012635537[21] Jackson R W. Rollett proviso in the stability of linear microwave circuits—a tutorial. IEEE Trans Microw Theory Tech, 2006, 40(3):993 http://ieeexplore.ieee.org/document/1603843/?arnumber=1603843[22] De Hek A P. Design, realisation and test of GaAs-based monolithic integrated X-band high-power amplifiers. Eindhoven:Technische Universiteit Eindhoven, 2002 -
Proportional views