Citation: |
Benlang Tian, Chao Chen, Wanli Zhang, Xingzhao Liu. Performance of an AlGaN/GaN MISHEMT with sodium beta-alumina for gate insulation and surface passivation[J]. Journal of Semiconductors, 2013, 34(9): 094003. doi: 10.1088/1674-4926/34/9/094003
****
B L Tian, C Chen, W L Zhang, X Z Liu. Performance of an AlGaN/GaN MISHEMT with sodium beta-alumina for gate insulation and surface passivation[J]. J. Semicond., 2013, 34(9): 094003. doi: 10.1088/1674-4926/34/9/094003.
|
Performance of an AlGaN/GaN MISHEMT with sodium beta-alumina for gate insulation and surface passivation
DOI: 10.1088/1674-4926/34/9/094003
More Information
-
Abstract
An AlGaN/GaN metal-insulator-semiconductor high-electron-mobility transistor (MISHEMT), with sodium beta-alumina (SBA) for both gate insulation and surface passivation, was investigated and compared with a conventional metal-semiconductor high-electron-mobility transistor (MESHEMT). The measured gate leakage current of the MISHEMT was reduced by approximately one order of magnitude as compared with that of the conventional MESHEMT. The saturation drain current of the AlGaN/GaN MISHEMT reached 830 mA/mm, which was about 43% higher than that of a conventional MESHEMT. The peak extrinsic transconductance of the MISHEMT was 103 mS/mm, which was similarly higher than that of the MESHEMT. The results suggested that the SBA thin film is an effective candidate gate dielectric for AlGaN/GaN MISHEMTs. -
References
[1] Wang C, Yue Y, Ma X, et al. Development and characteristic analysis of MOS AlGaN/GaN HEMTs. Journal of Semiconductors, 2008, 29(8):1557 http://www.jos.ac.cn/bdtxben/ch/reader/view_abstract.aspx?file_no=08010802&flag=1[2] Hao Y, Yue Y, Feng Q, et al. GaN MOS-HEMT using ultrathin Al2O3 dielectric with fmax of 30.8 GHz. Chinese Journal of Semiconductors, 2007, 28(11):1674[3] Fitch R C, Walker D E, Chabak K D, et al. Comparison of passivation layers for AlGaN/GaN high electron mobility transistors. J Vac Sci Technol B, 2011, 29(6):061204 doi: 10.1116/1.3656390[4] Kirkpatrick C, Lee B, Choi Y, et al. Threshold voltage stability comparison in AlGaN/GaN flash MOS-HFETs utilizing charge trap or floating gate charge storage. Phys Status Solidi C, 2012, 9(3/4):864[5] Ji D, Liu B, Lu Y, et al. Polarization-induced remote interfacial charge scattering in Al2O3/AlGaN/GaN double heterojunction high electron mobility transistors. Appl Phys Lett, 2012, 100(13):132105 doi: 10.1063/1.3698391[6] Chen C, Liu X, Zhang J, et al. Threshold voltage modulation mechanism of AlGaN/GaN metal-insulator-semiconductor high-electron mobility transistors with fluorinated Al2O3 as gate dielectrics. Appl Phys Lett, 2012, 100(13):133507 doi: 10.1063/1.3699029[7] Hove M V, Boulay S, Bahl S R, et al. CMOS process-compatible high-power low-leakage AlGaN/GaN MISHEMT on silicon. IEEE Electron Device Lett, 2012, 33(5):667 doi: 10.1109/LED.2012.2188016[8] Liu H Y, Chou B Y, Hsu W C, et al. A simple gate-dielectric fabrication process for AlGaN/GaN metal-oxide-semiconductor high-electron-mobility transistors. IEEE Electron Device Lett, 2012, 33(7):997 doi: 10.1109/LED.2012.2197370[9] Huang S, Jiang Q, Yang S, et al. Effective passivation of AlGaN/GaN HEMTs by ALD-grown AlN thin film. IEEE Electron Device Lett, 2012, 33(4):516 doi: 10.1109/LED.2012.2185921[10] Freedsman J J, Kubo T, Egawa T. Effect of AlN growth temperature on trap densities of in-situ metal-organic chemical vapor deposition grown AlN/AlGaN/GaN metal-insulator-semiconductor heterostructure field-effect transistors. AIP Advances, 2012, 2(2):022134 doi: 10.1063/1.4722642[11] Shih H A, Kudo M, Suzuki T K. Analysis of AlN/AlGaN/GaN metal-insulator-semiconductor structure by using capacitance-frequency-temperature mapping. Appl Phys Lett, 2012, 101(4):043501 doi: 10.1063/1.4737876[12] Liu C, Chor E F, Tan L S. Enhanced device performance of AlGaN/GaN HEMTs using HfO2 high-k dielectric for surface passivation and gate oxide. Semicond Sci Technol, 2007, 22(5):522 doi: 10.1088/0268-1242/22/5/011[13] Shi J, Eastman L F, Xin X, et al. High performance AlGaN/GaN power switch with HfO2 insulation. Appl Phys Lett, 2009, 95(4):042103 doi: 10.1063/1.3190506[14] Shi J, Eastman L F. Correlation between AlGaN/GaN MISHFET performance and HfO2 insulation layer quality. IEEE Electron Device Lett, 2011, 32(3):312 doi: 10.1109/LED.2010.2098839[15] Lee B, Kirkpatrick C, Choi Y H, et al. Normally-off AlGaN/GaN MOSHFET using ALD SiO2 tunnel dielectric and ALD HfO2 charge storage layer for power device application. Phys Status Solidi C, 2012, 9(3/4):868[16] Hu C C, Lin M S, Wu T Y, et al. AlGaN/GaN metal-oxide-semiconductor high-electron mobility transistor with liquid-phase-deposited barium-doped TiO2 as a gate dielectric. IEEE Trans Electron Devices, 2012, 59(1):121 doi: 10.1109/TED.2011.2171690[17] Chiu H C. Lin C W, Chen C H, et al. Low hysteresis dispersion La2O3 AlGaN/GaN MOS-HEMTs. J Electrochem Soc, 2010, 157(2):H160 doi: 10.1149/1.3264622[18] Yue Y, Hao Y, Zhang J, et al. AlGaN/GaN MOS-HEMT with HfO2 dielectric and Al2O3 interfacial passivation layer grown by atomic layer deposition. IEEE Electron Device Lett, 2008, 29(8):838 doi: 10.1109/LED.2008.2000949[19] Klauk H. Oxide dielectrics:a change of direction. Nature Mater, 2009, 8(11):853 doi: 10.1038/nmat2552[20] Pal B N, Dhar B M, See K C, et al. Solution-deposited sodium beta-alumina gate dielectrics for low-voltage and transparent field-effect transistors. Nature Mater, 2009, 8(11):898 doi: 10.1038/nmat2560[21] Tian B L, Chen C, Li Y R, et al. Sodium beta-alumina thin films as gate dielectrics for AlGaN/GaN metal insulator semiconductor high-electron-mobility transistors. Chin Phys B, 2012, 21(12):126102 doi: 10.1088/1674-1056/21/12/126102[22] Tian B, Chen C, Zhang J, et al. Structure and electrical characteristics of AlGaN/GaN MISHFET with Al2O3 thin film as both surface passivation and gate dielectric. Semicond Sci Technol, 2011, 26(8):085023 doi: 10.1088/0268-1242/26/8/085023[23] Kordoš P, Gregušová D, Stoklas R, et al. Improved transport properties of Al2O3/AlGaN/GaN metal-oxide-semiconductor heterostructure field-effect transistor. Appl Phys Lett, 2007, 90(12):123513 doi: 10.1063/1.2716846 -
Proportional views