Citation: |
Fei Guo, Dan Lu, Ruikang Zhang, Baojun Wang, Xilin Zhang, Chen Ji. 1.3-μm 1×4 MMI coupler based on shallow-etched InP ridge waveguides[J]. Journal of Semiconductors, 2014, 35(2): 024012. doi: 10.1088/1674-4926/35/2/024012
****
F Guo, D Lu, R K Zhang, B J Wang, X L Zhang, C Ji. 1.3-μm 1×4 MMI coupler based on shallow-etched InP ridge waveguides[J]. J. Semicond., 2014, 35(2): 024012. doi: 10.1088/1674-4926/35/2/024012.
|
1.3-μm 1×4 MMI coupler based on shallow-etched InP ridge waveguides
DOI: 10.1088/1674-4926/35/2/024012
-
Abstract
A 1.3-μm 1×4 MMI coupler is designed and fabricated on an InP substrate based on a shallow etched waveguide structure. Tapered input/output waveguides and a bending waveguide design are adopted and applied in the device to optimize the performance. The average excess losses of the 1×4 MMI coupler per channel are 2.8, 1.7, 2.9, and 2.9 dB, respectively. The smallest excess loss can be lower than 0.5 dB in the 40-nm spectrum bandwidth. The average uniformity between the four channels of the MMI coupler is 1.3 dB, while the smallest uniformity is only 0.4 dB.-
Keywords:
- MMI,
- shallow etched waveguide,
- beam propagation method
-
References
[1] Besse P A, Bachmann M, Melchior H, et al. Optical bandwidth and fabrication tolerances of multimode interference couplers. J Lightwave Technol, 1994, 12(6):1004 doi: 10.1109/50.296191[2] Thaniyavarn S, Findakly T, Booher D, et al. Domain inversion effects in Ti-LiNbO3 integrated optical devices. Proc SPIE, 1985:559 https://www.osapublishing.org/oe/abstract.cfm?uri=oe-15-17-10739#figanchor2[3] Saida T, Himeno A, Okuno M, et al. Silica-based 2×2 multimode interference coupler with arbitrary power splitting ratio. Electron Lett, 1999, 35(23):2031 doi: 10.1049/el:19991363[4] Spiekman L H, Oei Y S, Metaal E G, et al. Extremely small multimode interference couplers and ultrashort bends on InP by deep etching. IEEE Photonics Technol Lett, 1994, 6(8):1008 doi: 10.1109/68.313078[5] Cole C, Huebner B, Johnson J E. Photonic integration for high volume, low cost applications. IEEE Commun Mag, 2009, 47(3):S16 doi: 10.1109/MCOM.2009.4804385[6] Anderson J, Traverso M. Optical transceivers for 100 Gigabit Ethernet and its transport. IEEE Commun Mag, 2010, 48(3):S35 doi: 10.1109/MCOM.2010.5434376[7] Kanazawa S, Fujisawa T, Ohki A. A compact EADFB laser array module for a future 100-Gb/s Ethernet transceiver. IEEE J Sel Topics Quantum Electron, 2011, 17(5):1191 doi: 10.1109/JSTQE.2011.2124446[8] Fujisawa T, Kanazawa S, Takahata K. 1.3-μm, 4×25-Gbit/s, EADFB laser array module with large-output-power and low-driving-voltage for energy-efficient 100GbE transmitter. Opt Express, 2012, 20(1):614 doi: 10.1364/OE.20.000614[9] Soldano L, Pennings E. Optical multimode interference devices based on self-imaging:principles and application. J Lightwave Technol, 1995, 13(4):615 doi: 10.1109/50.372474[10] Liang J J, Ballantyne J M. Self-aligned dry-etching process for waveguide diode ring lasers. J Vec Sci Technol B, 1994, 12(5):2929 doi: 10.1116/1.587538[11] Feuchter T, Thirstrup C. High precision planar waveguide propagation loss measurement technique using a Fabry-Pérot cavity. IEEE Photonics Technol Lett, 1994, 6(10):1244 doi: 10.1109/68.329652[12] Pennings E C M, van Roijen R, van Stralen M J N, et al. Reflection properties of multimode interference devices. IEEE Photonics Technol Lett, 1994, 6(6):715 doi: 10.1109/68.300172[13] Erasme D, Spiekman L H, Herben C G P, et al. Experimental assessment of the reflection of passive multimode interference couplers. IEEE Photonics Technol Lett, 1997, 9(12):1604 doi: 10.1109/68.643282 -
Proportional views