Citation: |
Min Chen, Yuntao Liu, Jingbo Xiao, Jie Chen. A CMOS detection chip for amperometric sensors with chopper stabilized incremental ΔΣ ADC[J]. Journal of Semiconductors, 2016, 37(6): 065004. doi: 10.1088/1674-4926/37/6/065004
****
M Chen, Y T Liu, J B Xiao, J Chen. A CMOS detection chip for amperometric sensors with chopper stabilized incremental ΔΣ ADC[J]. J. Semicond., 2016, 37(6): 065004. doi: 10.1088/1674-4926/37/6/065004.
|
A CMOS detection chip for amperometric sensors with chopper stabilized incremental ΔΣ ADC
DOI: 10.1088/1674-4926/37/6/065004
More Information
-
Abstract
This paper presents a low noise complimentary metal-oxide-semiconductor (CMOS) detection chip for amperometric electrochemical sensors. In order to effectively remove the input offset of the cascaded integrators and the low frequency noise in the modulator, a novel offset cancellation chopping scheme was proposed in the Incremental Δ Σ analog to digital converter (IADC). A novel low power potentiostat was employed in this chip to provide the biasing voltage for the sensor while mirroring the sensor current out for detection. The chip communicates with FPGA through standard built in I2C interface and SPI bus. Fabricated in 0.18-μm CMOS process, this chip detects current signal with high accuracy and high linearity. A prototype microsystem was produced to verify the detection chip performance with current input as well as micro-sensors.-
Keywords:
- CMOS,
- amperometric sensors,
- chopper-stabilized,
- system-on-chip (SoC)
-
References
[1] Liu Jialin, Zhang Xu, Hu Xiaohui, et al. A CMOS front end chip for implantable neural recording with wide voltage supply range. Journal of Semiconductors, 2015, 36(10):105003[2] Huang Y, Liu Y, Hassler B L, et al. A protein-based electrochemical biosensor array platform for integrated microsystems. IEEE Trans Biomed Circuits Syst, 2013, 7(1):43[3] Martin S M, Gebara F H, Larivee B J, et al. A CMOS-integrated microinstrument for trace detection of heavy metals. IEEE J Solid-State Circuits, 2005, 40(12):2777[4] Depari A, Flammini A, Sisinni E. Fast, versatile, and low-cost interface circuit for electrochemical and resistive gas sensor. IEEE Sensors Journal, 2014, 14(2):315[5] Lagarde F, Jaffrezic-Renault N. Cell-based electrochemical biosensors for water quality assessment. Analytical and Bioanalytical Chemistry, 2011, 400:947[6] Huang Y J, Tzeng T H, Lin T W, et al. A self-powered CMOS reconfigurable multi-sensor SoC for biomedical applications. IEEE J Solid-State Circuits, 2014, 49(4):851[7] Markus J, Silva J, Temes G C. Theory and applications of incremental delta-sigma converters. IEEE Trans Circuits Syst I, 2004, 51(4):678[8] Enz C C, Temes G C. Circuit techniques for reducing the effects of op-amp imperfections:autozeroing, correlated double sampling, and chopper stabilization. Proc IEEE, 1996, 84(11):1584[9] Huang Ting, Jin Lele, Li Hui, et al. A 1.2 V 600 nW 12-bit 2 kS/s incremental ADC for biosensor application. Journal of Semiconductors, 2014, 35(11):115007[10] Jafari H M, Genov R. Chopper-stabilized bidirectional current acquisition circuits for electrochemical amperometric biosensors. IEEE Trans Circuits Syst I, 2013, 60(5):1149[11] Fidler J C, Penrose W R, Bobis J P. A potentiostat based on a voltage-controlled current source for use with amperometric gas sensors. IEEE Trans Instrum Measure, 1992, 41(2):308[12] Park H, Nam K Y, Su D K, et al. A 0.7-V 870μ W digital audio CMOS sigma-delta modulator. IEEE J Solid-State Circuits, 2009, 44(4):1078[13] Quiquempoix V, Deval P, Barreto P, et al. A low-power 22-bit incremental ADC. IEEE J Solid-State Circuits, 2006, 41(7):1562[14] Agnes A, Bonizzoni E, Maloberti F. High-resolution multi-bit second-order incremental converter with 1.5-μ V residual offset and 94-dB SFDR. Analog Integrated Circuits and Signal Processing, 2012, 72:531[15] Li Zhichao, Liu Yuntao, Chen Min, et al. A CMOS analog front-end chip for amperometric electrochemical sensors. Journal of Semiconductors, 2015, 36(7):075004[16] Busoni L, Carla M, Lanzi L. A comparison between potentiostatic circuits with grounded work or auxiliary electrode. Rev Scient Instrum, 2002, 73(4):1921[17] Balasubramanian V, Ruedi P F, Temiz Y, et al. A 0.18μm biosensor front-end based on noise, distortion cancelation and chopper stabilization techniques. IEEE Trans Biomedical Circuits Syst, 2013, 7(5):660[18] Martin S M, Gebara F H, Strong T D, et al. A fully differential potentiostat. IEEE Sensors Journal, 2009, 9(2):135 -
Proportional views