Citation: |
Haili Wang, Li Zhong, Jida Hou, Suping Liu, Xiaoyu Ma. 1.06 μm high-power InGaAs/GaAsP quantum well lasers[J]. Journal of Semiconductors, 2017, 38(11): 114005. doi: 10.1088/1674-4926/38/11/114005
****
H L Wang, L Zhong, J D Hou, S P Liu, X Y Ma. 1.06 μm high-power InGaAs/GaAsP quantum well lasers[J]. J. Semicond., 2017, 38(11): 114005. doi: 10.1088/1674-4926/38/11/114005.
|
1.06 μm high-power InGaAs/GaAsP quantum well lasers
DOI: 10.1088/1674-4926/38/11/114005
More Information
-
Abstract
The high power and low internal loss 1.06 μm InGaAs/GaAsP quantum well lasers with asymmetric waveguide structure were designed and fabricated. For a 4000 μm cavity length and 100 μm stripe width device, the maximum output power and conversion efficiency of the device are 7.13 W and 56.4%, respectively. The cavity length dependence of the threshold current density and conversion efficiency have been investigated theoretically and experimentally; the laser diode with 4000 μm cavity length shows better characteristics than that with 3000 and 4500 μm cavity length: the threshold current density is 132.5 A/cm2, the slope efficiency of 1.00 W/A and the junction temperature of 15.62 K were achieved.-
Keywords:
- semiconductor laser,
- high power,
- asymmetric waveguide,
- cavity length
-
References
[1] Chung H S, Lee M S, Lee D, et al. Low noise, high efficiency L-band EDFA with 980 nm pumping. Electron Lett, 1999, 35: 1099 doi: 10.1049/el:19990750[2] Guo W T, Tan M Q, Jiao J. 980 nm fiber grating external cavity semiconductor lasers with high side mode suppression ratio and high stable frequency. J Semicond, 2014, 35: 84007 doi: 10.1088/1674-4926/35/8/084007[3] Dong Z, Wang C L, Jing H Q, et al. High power single mode 980 nm AlGaInAs/AlGaAs quantum well lasers with a very low threshold current. J Semicond, 2013, 34: 114011 doi: 10.1088/1674-4926/34/11/114011[4] Bettiati M, Laruelle F, Cargemel V, et al. High brightness single-mode 1060-nm diode lasers for demanding industrial applications. The European Conference on Lasers and Electro-Optics, 2007: CB_19[5] Yuda M, Temmyo J, Sasaki T, et al. High-power highly reliable 1.06 μm InGaAs strained-quantum-well laser diodes by low-temperature growth of InGaAs well layers. Electron Lett, 2003, 39(8): 1[6] Wan C T, Su Y K, Yu H C, et al. Low transparency current density and low internal loss of 1060-nm InGaAs laser with GaAsP–GaAs superlattices as strain-compensated layer. IEEE Photonics Technol Lett, 2009, 21(19): 1474 doi: 10.1109/LPT.2009.2028654[7] Nguyen H K, Coleman S, Visovsky N J, et al. Reliable high-power 1060 nm DBR lasers for second-harmonic generation. Electron Lett, 2007, 43(13): 716 doi: 10.1049/el:20070694[8] Mohrdiek S, Troger J, Pliska T, et al. Performance and reliability of pulsed 1060 nm laser modules. Lasers and Applications in Science and Engineering, 2008: 687320[9] Miah M J, Kettler T, Posilovic K, et al. 1.9 W continuous-wave single transverse mode emission from 1060 nm edge-emitting lasers with vertically extended lasing area. Appl Phys Lett, 2014, 105(15): 151105 doi: 10.1063/1.4898010[10] Ren Y X, Chen H T, Zhang S Z, et al. 1.06 μm high power CW semiconductor lasers. Nanoelectronic Device & Technology, 2009, 46(4): 209[11] Li T, Hao E J, Zhang Y. An asymmetric heterostructure waveguide structure for semiconductor lasers. J Infrared Millim Waves, 2015, 34(5): 613[12] Tan S Y, Zhai T, Zhang R K, et al. Graded doping low internal loss 1060-nm InGaAs/AlGaAs quantum well semiconductor lasers. Chin Phys B, 2015, 24(6): 064211 doi: 10.1088/1674-1056/24/6/064211[13] Li T, Hao E J, Li Z J, et al. Optimization of waveguide structure for high power 1060 nm diode laser. J Infrared Millim Waves, 2012, 31(3): 226 doi: 10.3724/SP.J.1010.2012.00226[14] Zhang Y, Yang R X. An influence of cavity length on single emitter semiconductor laser performance. Semicond Device, 2013, 12: 6[15] Li Z H, Li M, Wang L, et al. Effect of cavity length on Jth and ηd of InGaAsP/InGaP/GaAs SQW lasers. Semicondr Optoelectron, 2002, 23: 90[16] Pikhtin N A, Slipchenko S O, Sokolova Z N, et al. Internal optical loss in semiconductor lasers. Semiconductors, 2004, 38(3): 360 doi: 10.1134/1.1682615[17] Nabiev R F, Vail E C, Chang-Hasnain C J. Temperature dependent efficiency and modulation characteristics of Al-free 980-nm laser diodes. IEEE J Sel Topics Quantum Electron, 1995, 1(2): 234 doi: 10.1109/2944.401202[18] Fye D. An optimization procedure for the selection of diode laser facet coatings. IEEE J Quantum Electron, 1981, 17(9): 1950 doi: 10.1109/JQE.1981.1071351[19] Koren U, Miller B I, Su Y K, et al. Low internal loss separate confinement heterostructure InGaAs/InGaAsP quantum well laser. Appl Phys Lett, 1987, 51(21): 1744 doi: 10.1063/1.98510 -
Proportional views