Citation: |
Zhen Liu, Jiaqi Wang, Hongyan Yu, Xuliang Zhou, Weixi Chen, Zhaosong Li, Wei Wang, Ying Ding, Jiaoqing Pan. Asymmetric quantum well broadband thyristor laser[J]. Journal of Semiconductors, 2017, 38(11): 114006. doi: 10.1088/1674-4926/38/11/114006
****
Z Liu, J Q Wang, H Y Yu, X L Zhou, W X Chen, Z S Li, W Wang, Y Ding, J Q Pan. Asymmetric quantum well broadband thyristor laser[J]. J. Semicond., 2017, 38(11): 114006. doi: 10.1088/1674-4926/38/11/114006.
|
Asymmetric quantum well broadband thyristor laser
DOI: 10.1088/1674-4926/38/11/114006
More Information
-
Abstract
A broadband thyristor laser based on InGaAs/GaAs asymmetric quantum well (AQW) is fabricated by metal organic chemical vapor deposition (MOCVD). The 3-μm-wide Fabry–Perot (FP) ridge-waveguide laser shows an S-shape I−V characteristic and exhibits a flat-topped broadband optical spectrum coverage of ~27 nm (Δ−10 dB) at a center wavelength of ~1090 nm with a total output power of 137 mW under pulsed operation. The AQW structure was carefully designed to establish multiple energy states within, in order to broaden the gain spectrum. An obvious blue shift emission, which is not generally acquired in QW laser diodes, is observed in the broadening process of the optical spectrum as the injection current increases. This blue shift spectrum broadening is considered to result from the prominent band-filling effect enhanced by the multiple energy states of the AQW structure, as well as the optical feedback effect contributed by the thyristor laser structure.-
Keywords:
- broadband laser,
- asymmetric quantum well,
- thyristor
-
References
[1] Shidlovski V R, Wei J. Superluminescent diodes for optical coherence tomography. Proc SPIE, 2002, 4648: 139 doi: 10.1117/12.462650[2] Maeda Y, Yamada M, Endo T, et al. 1700 nm ASE light source and its application to mid-infrared spectroscopy. Optoelectronics and Communication Conf and Australian Conf on Opt Fibre Technol, 2014[3] Heo D, Lee J S, Yun I K, et al. Polarization-independent, high-power, and angle-flared superluminescent diode for WDM-PON applications. Proc IEEE LEOS Annual Meeting Conf, 2005[4] Shin D J, Keh Y C, Kwon J W, et al. Low-cost WDM-PON with colorless bidirectional transceivers. J Lightwave Technol, 2006, 24(1): 158 doi: 10.1109/JLT.2005.861122[5] Gmachl C, Sivco D L, Colombelli R, et al. Ultra-broadband semiconductor laser. Nature, 2002, 415: 883 doi: 10.1038/415883a[6] Djie H S, Ooi B S , Fang X M, et al. Room-temperature broadband emission of an InGaAs/GaAs quantum dots laser. Opt Lett, 2007, 32: 44 doi: 10.1364/OL.32.000044[7] Djie H S, Tan C L, Ooi B S, et al. Ultrabroad stimulated emission from quantum-dash laser. Appl Phys Lett, 2007, 91: 111116 doi: 10.1063/1.2784969[8] Wang H, Zhou X, Yu H, et al. Ultrabroad stimulated emission from quantum well laser. Appl Phys Lett, 2014, 104: 251101 doi: 10.1063/1.4885366[9] Slipchenko S O, Podoskin A A, Rozhkov A V, et al. A study of nonlinear lasing dynamics of an InGaAs/AlGaAs/GaAs heterostructure power laser-thyristor emitting at 905 nm. J Appl Phys, 2014, 116: 084503 doi: 10.1063/1.4893956[10] Lin C F, Lee B L, Lin P C. Broad-band superluminescent diodes fabricated on a substrate with asymmetric dual quantum wells. IEEE Photonics Technol Lett, 1996, 8: 1456 doi: 10.1109/68.541548[11] Kwon O K, Kim K, Sim E D, et al. Asymmetric multiple-quantum-well laser diodes with wide and flat gain. Opt Lett, 2003, 28: 2189 doi: 10.1364/OL.28.002189[12] Khan M Z M, Ng T K, Lee C S, et al. Chirped InAs/InP quantum-dash laser with enhanced broad spectrum of stimulated emission. Appl Phys Lett, 2013, 102: 091102 doi: 10.1063/1.4794407[13] Podoskin A A, Soboleva O S, Zakharov M S, et al. Optical feedback in 905 nm power laser-thyristors based on AlGaAs/GaAs heterostructures. Semicond Sci Technol, 2015, 30: 125011 doi: 10.1088/0268-1242/30/12/125011[14] Slipchenko S O, Podoskin A A, Rozhkov A V, et al. High-power laser thyristors with high injection efficiency (λ=890-910 nm). IEEE Photonics Technol Lett, 2015, 27: 307[15] Bennett B R, Soref R A, Del Alamo J A. Carrier-Induced Change in Refractive Index of InP, GaAs, and InGaAsP. IEEE J Quantum Electron, 1990, 26: 113 doi: 10.1109/3.44924[16] Chen P A, Chang C Y, Juang C. Carrier-Induced Energy Shift in GaAs/AlGaAs Multiple Quantum Well Laser Diodes. IEEE J Quantum Electron, 1993, 29: 2607 doi: 10.1109/3.250382 -
Proportional views