Citation: |
Hansheng Wang, Weiliang He, Minghui Zhang, Lu Tang. An improved single-π equivalent circuit model for on-chip inductors in GaAs process[J]. Journal of Semiconductors, 2017, 38(11): 114010. doi: 10.1088/1674-4926/38/11/114010
****
H S Wang, W L He, M H Zhang, L Tang. An improved single-π equivalent circuit model for on-chip inductors in GaAs process[J]. J. Semicond., 2017, 38(11): 114010. doi: 10.1088/1674-4926/38/11/114010.
|
An improved single-π equivalent circuit model for on-chip inductors in GaAs process
DOI: 10.1088/1674-4926/38/11/114010
More Information
-
Abstract
An improved single-π equivalent circuit model for on-chip inductors in the GaAs process is presented in this paper. Considering high order parasites, the model is established by comprising an improved skin effect branch and a substrate lateral coupling branch. The parameter extraction is based on an improved characteristic function approach and vector fitting method. The model has better simulation than the previous work over the measured data of 2.5r and 4.5r on-chip inductors in the GaAs process. -
References
[1] Alizadeh A, Medi A. A broadband integrated class-J power amplifier in GaAs pHEMT technology. IEEE Trans Microw Theory Tech, 2016, 64(6): 1822 doi: 10.1109/TMTT.2016.2552167[2] Xu Z, Mazumder P. Terahertz beam steering with doped GaAs phase modulator and a design of spatial-resolved high-speed terahertz analog-to-digital converter. IEEE Trans Electron Devices, 2014, 61(6): 2195 doi: 10.1109/TED.2014.2318278[3] Zhang Z, Guo Y, Li F, et al. A sandwich-type thermoelectric microwave power sensor for GaAs MMIC-compatible applications. IEEE Electron Device Lett, 2016, 37(12): 1639 doi: 10.1109/LED.2016.2619380[4] Long Y, Zhong Z, Guo Y X. A novel 4-D artificial-neural-network-based hybrid large-signal model of GaAs pHEMTs. IEEE Trans Microw Theory Tech, 2016, 64(6): 1752 doi: 10.1109/TMTT.2016.2555948[5] Schwitter B K, Fattorini A P, Parker A E, et al. Parameter extractions for a GaAs pHEMT thermal model using a TFR-heated test structure. IEEE Trans Electron Devices, 2015, 62(3): 795 doi: 10.1109/TED.2014.2388201[6] Khandelwal S, Fjeldly T A. Analysis of drain-current nonlinearity using surface-potential-based model in GaAs pHEMTs. IEEE Trans Microw Theory and Tech, 2013, 61(9): 3265 doi: 10.1109/TMTT.2013.2275943[7] Yu X, Huang W, Li M Y, et al. Ultra-small, high-frequency, and substrate-immune microtube inductors transformed from 2D to 3D. Sci Rep, 2015, 5(3): 43[8] Herget P, Wang N, O'Sullivan E J, et al. Limits to on-chip power conversion with thin film inductors. IEEE Trans Magn, 2013, 49(7): 4137 doi: 10.1109/TMAG.2013.2240442[9] Gao Z, Kang K, Jiang Z, et al. Analysis and equivalent-circuit model for CMOS on-chip multiple coupled inductors in the millimeter-wave region. IEEE Trans Electron Devices, 2015, 62(12): 3957 doi: 10.1109/TED.2015.2488840[10] Mallik K, Abuelgasim A, Hashim N, et al. Analytical and numerical model of spiral inductors on high resistivity silicon substrates. Solid State Electron, 2014, 93(3): 43[11] Gil J, Shin H. A simple wide-band on-chip inductor model for silicon-based RF ICs. IEEE Trans Microw Theory Tech, 2003, 51(9): 2023 doi: 10.1109/TMTT.2003.815870[12] Yin W Y, Li L W, Pan S J, et al. Experimental characterization of on-chip inductor and capacitor interconnect: part II. shunt case. IEEE Trans Magn, 2004, 39(3): 1657[13] Huang F, Lu J, Zhu Y, et al. Effect of substrate parasitic inductance on silicon-based transmission lines and on-chip inductors. IEEE Electron Device Lett, 2007, 28(11): 1025 doi: 10.1109/LED.2007.906800[14] Huang F, Jiang N, Bian E. Characteristic-function approach to parameter extraction for asymmetric equivalent circuit of on-chip spiral inductors. IEEE Trans Microw Theory Tech, 2006, 54(1): 115 doi: 10.1109/TMTT.2005.860333[15] Pordanjani I R, Xu W. Improvement of vector fitting by using a new method for selection of starting poles. Electr Power Sys Res, 2014, 107: 206 -
Proportional views