Citation: |
Zihan Zhang, Jia Li, Zhimin Fang, Haipeng Xie, Yongbo Yuan, Chuantian Zuo, Liming Ding, Bin Yang. Adjusting energy level alignment between HTL and CsPbI2Br to improve solar cell efficiency[J]. Journal of Semiconductors, 2021, 42(3): 030501. doi: 10.1088/1674-4926/42/3/030501
****
Z H Zhang, J Li, Z M Fang, H P Xie, Y B Yuan, C T Zuo, L M Ding, B Yang, Adjusting energy level alignment between HTL and CsPbI2Br to improve solar cell efficiency[J]. J. Semicond., 2021, 42(3): 030501. doi: 10.1088/1674-4926/42/3/030501.
|
Adjusting energy level alignment between HTL and CsPbI2Br to improve solar cell efficiency
DOI: 10.1088/1674-4926/42/3/030501
More Information
-
References
[1] Burschka J, Pellet N, Moon S, et al. Sequential deposition as a route to high-performan perovskite-sensitized solar cells. Nature, 2013, 499, 316 doi: 10.1038/nature12340[2] Stranks S, Eperon G, Grancini G, et al. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science, 2013, 342, 341 doi: 10.1126/science.1243982[3] Dong Q, Fang Y, Shao Y, et al. Electron-hole diffusion lengths >175 μm in solution-grown CH3NH3PbI3 single crystals. Science, 2015, 347, 967 doi: 10.1126/science.aaa5760[4] Green M, Dunlop E, Hohl-Ebinger J, et al. Solar cell efficiency tables (version 56). Prog Photovoltaics, 2020, 28, 629 doi: 10.1002/pip.3303[5] Jia X, Zuo C, Tao S, et al. CsPb(IxBr1– x)3 solar cells. Sci Bull, 2019, 64, 1532 doi: 10.1016/j.scib.2019.08.017[6] Marronnier A, Roma G, Boyer-Richard S, et al. Anharmonicity and disorder in the black phases of cesium lead iodide used for stable inorganic perovskite solar cells. ACS Nano, 2018, 12, 3477 doi: 10.1021/acsnano.8b00267[7] Xiang S, Fu Z, Li W, et al. Highly air-stable carbon-based α-CsPbI3 perovskite solar cells with a broadened optical spectrum. ACS Energy Lett, 2018, 3, 1824 doi: 10.1021/acsenergylett.8b00820[8] Fang Z, Meng X, Zuo C, et al. Interface engineering gifts CsPbI2.25Br0.75 solar cells high performance. Sci Bull, 2019, 64, 1743 doi: 10.1016/j.scib.2019.09.023[9] Liu C, Li W, Zhang C, et al. All-inorganic CsPbI2Br perovskite solar cells with high efficiency exceeding 13%. J Am Chem Soc, 2018, 140, 3825 doi: 10.1021/jacs.7b13229[10] Zeng Q, Liu L, Xiao Z, et al. A two-terminal all-inorganic perovskite/organic tandem solar cell. Sci Bull, 2019, 64, 885 doi: 10.1016/j.scib.2019.05.015[11] Zhou L, Guo X, Lin Z, et al. Interface engineering of low temperature processed all-inorganic CsPbI2Br perovskite solar cells toward PCE exceeding 14%. Nano Energy, 2019, 60, 583 doi: 10.1016/j.nanoen.2019.03.081[12] Rao H, Ye S, Gu F, et al. Morphology controlling of all-inorganic perovskite at low temperature for efficient rigid and flexible solar cells. Adv Energy Mater, 2018, 8, 1800758 doi: 10.1002/aenm.201800758[13] Gao Y, Dong Y, Huang K, et al. Highly efficient, solution-processed CsPbI2Br planar heterojunction perovskite solar cells via flash annealing. ACS Photonics, 2018, 5, 4104 doi: 10.1021/acsphotonics.8b00783[14] Suarez B, Gonzalez-Pedro V, Ripolles T, et al. Recombination study of combined halides (Cl, Br, I) perovskite solar cells. J Phys Chem Lett, 2014, 5, 1628 doi: 10.1021/jz5006797[15] Tress W, Marinova N, Inganas O, et al. Predicting the open-circuit voltage of CH3NH3PbI3 perovskite solar cells using electroluminescence and photovoltaic quantum efficiency spectra: The role of radiative and non-radiative recombination. Adv Energy Mater, 2015, 5, 1400812 doi: 10.1002/aenm.201400812[16] Wang Q, Bi C, Huang J. Doped hole transport layer for efficiency enhancement in planar heterojunction organolead trihalide perovskite solar cells. Nano Energy, 2015, 15, 275 doi: 10.1016/j.nanoen.2015.04.029[17] Kim Y, Jung E, Kim G, et al. Sequentially fluorinated PTAA polymers for enhancing VOC of high-performance perovskite solar cells. Adv Energy Mater, 2018, 8, 1801668 doi: 10.1002/aenm.201801668[18] Ran J, Yuan P, Xie H, et al. Triphenylamine-polystyrene blends for perovskite solar cells with simultaneous energy loss suppression and stability improvement. Sol RRL, 2020, 4, 2000490 doi: 10.1002/solr.202000490[19] Meng L, Sun C, Wang R, et al. Tailored phase conversion under conjugated polymer enables thermally stable perovskite solar cells with efficiency exceeding 21%. J Am Chem Soc, 2018, 140, 17255 doi: 10.1021/jacs.8b10520[20] Yan L, Xue Q, Liu M, et al. Interface engineering for all-inorganic CsPbI2Br perovskite solar cells with efficiency over 14%. Adv Mater, 2018, 30, 1802509 doi: 10.1002/adma.201802509 -
Supplements
21010045suppl.pdf
-
Proportional views