Citation: |
Xiaoyu Tian, Yushen Liu. Van der Waals heterojunction ReSe2/WSe2 polarization-resolved photodetector[J]. Journal of Semiconductors, 2021, 42(3): 032001. doi: 10.1088/1674-4926/42/3/032001
****
X Y Tian, Y S Liu, Van der Waals heterojunction ReSe2/WSe2 polarization-resolved photodetector[J]. J. Semicond., 2021, 42(3): 032001. doi: 10.1088/1674-4926/42/3/032001.
|
Van der Waals heterojunction ReSe2/WSe2 polarization-resolved photodetector
DOI: 10.1088/1674-4926/42/3/032001
More Information
-
Abstract
Polarization-resolved photodetectors, a significant branch of photodetection, can more effectively distinguish the target from the background by exploiting polarization-sensitive characteristics. However, due to the absence of intrinsic polarized absorption properties of many materials, there is still a great challenge to develop the high-performance polarization-resolved photodetectors. Here, we report a van der Waals heterojunction (vdWH) ReSe2/WSe2 photodetector, which performs a high responsivity of ~0.28 A/W and a high detectivity of 1.1 × 1012 Jones under the illumination of 520 nm laser at room temperature. Remarkably, scanning photocurrent mapping (SPCM) measurements demonstrate the photoresponse of devices closely depend on the polarized angle of the incident light, indicating the effective polarized light detection. This work paves the way to develop high-performance polarization-resolved photodetectors based on two-dimensional (2D) materials.-
Keywords:
- ReSe2/WSe2,
- photodetector,
- polarization
-
References
[1] Hu F, Zhang X Y, Cheng Y Y, et al. Influence of surface roughness on polarization property in passive millimeter-wave imaging. IEICE Electron Express, 2017, 14, 20171005 doi: 10.1587/elex.14.20171005[2] Hu W D, Li Q, Chen X S, et al. Recent progress on advanced infrared photodetectors. Acta Phys Sin, 2019, 68, 7 doi: 10.7498/aps.68.20190281[3] Liu F C, Zheng S J, He X X, et al. Highly sensitive detection of polarized light using anisotropic 2D ReS2. Adv Funct Mater, 2016, 26, 1169 doi: 10.1002/adfm.201504546[4] Gong J Q, Zhan H G, Liu D Z. A review on polarization information in the remote sensing detection. Spectrosc Spect Anal, 2010, 30, 1088 doi: 10.3964/j.issn.1000-0593(2010)04-1088-08[5] Zhao H, Guo Q S, Xia F N, et al. Two-dimensional materials for nanophotonics application. Nanophotonics, 2015, 4, 128 doi: 10.1515/nanoph-2014-0022[6] Wu P, Ameen T, Zhang H R, et al. Complementary black phosphorus tunneling field-effect transistors. ACS Nano, 2019, 13, 377 doi: 10.1021/acsnano.8b06441[7] Zhao H, Wu J B, Zhong H X, et al. Interlayer interactions in anisotropic atomically thin rhenium diselenide. Nano Res, 2015, 8, 3651 doi: 10.1007/s12274-015-0865-0[8] Bullock J, Amani M, Cho J, et al. Polarization-resolved black phosphorus/molybdenum disulfide mid-wave infrared photodiodes with high detectivity at room temperature. Nat Photon, 2018, 12, 601 doi: 10.1038/s41566-018-0239-8[9] Mittendorff M, Suess R J, Leong E, et al. Optical gating of black phosphorus for terahertz detection. Nano Lett, 2017, 17, 5811 doi: 10.1021/acs.nanolett.7b02931[10] Ye L, Wang P, Luo W J, et al. Highly polarization sensitive infrared photodetector based on black phosphorus-on-WSe2 photogate vertical heterostructure. Nano Energy, 2017, 37, 53 doi: 10.1016/j.nanoen.2017.05.004[11] Ho C H, Huang Y S, Tiong K K. In-plane anisotropy of the optical and electrical properties of ReS2 and ReSe2 layered crystals. J Alloy Compd, 2001, 317/318, 222 doi: 10.1016/S0925-8388(00)01332-3[12] Ali M H, Kang D H, Park J H. Rhenium diselenide (ReSe2) infrared photodetector enhanced by (3-aminopropyl)trimethoxysilane (APTMS) treatment. Org Electron, 2018, 53, 14 doi: 10.1016/j.orgel.2017.11.006[13] Liu Y P, Li Z L, Yao L, et al. Confined growth of NiCo2S4 nanosheets on carbon flakes derived from eggplant with enhanced performance for asymmetric supercapacitors. Chem Eng J, 2019, 366, 550 doi: 10.1016/j.cej.2019.02.125[14] Yao Y, Okur S, Lyle L A M, et al. Growth and characterization of α-, β-, and ϵ-phases of Ga2O3 using MOCVD and HVPE techniques. Mater Res Lett, 2018, 6, 268 doi: 10.1080/21663831.2018.1443978[15] Wang P, Xia H, Li Q, et al. Sensing infrared photons at room temperature: From bulk materials to atomic layers. Small, 2019, 15, 1904396 doi: 10.1002/smll.201904396[16] Wang X T, Huang L, Peng Y T, et al. Enhanced rectification, transport property and photocurrent generation of multilayer ReSe2/MoS2 p–n heterojunctions. Nano Res, 2016, 9, 507 doi: 10.1007/s12274-015-0932-6[17] Wu F, Li Q, Wang P, et al. High efficiency and fast van der Waals hetero-photodiodes with a unilateral depletion region. Nat Commun, 2019, 10, 4663 doi: 10.1038/s41467-019-12707-3[18] Zondiner U, Rozen A, Rodan-Legrain D, et al. Cascade of phase transitions and Dirac revivals in magic angle graphene. arXiv: 1912.06150, 2019[19] Gao A Y, Lai J W, Wang Y J, et al. Observation of ballistic avalanche phenomena in nanoscale vertical InSe/BP heterostructures. Nat Nanotechnol, 2019, 14, 217 doi: 10.1038/s41565-018-0348-z[20] Ekuma C E, Najmaei S, Dubey M. Electronic and vibrational properties of van der Waals heterostructures of vertically stacked few-layer atomically thin MoS2 and BP. Mater Today Commun, 2019, 19, 383 doi: 10.1016/j.mtcomm.2019.03.005[21] Xu R, Wei D, Du B, et al. A photoelectrochemical sensor for highly sensitive detection of amyloid beta based on sensitization of Mn: CdSe to Bi2WO6/CdS. Biosens Bioelectron, 2018, 122, 37 doi: 10.1016/j.bios.2018.09.030[22] Nie Z H, Wang Y H, Li Z L, et al. Ultrafast free carrier dynamics in black phosphorus–molybdenum disulfide (BP/MoS2) heterostructures. Nanoscale Horiz, 2019, 4, 1099 doi: 10.1039/C9NH00045C[23] Wu F, Xia H, Sun H D, et al. AsP/InSe van der waals tunneling heterojunctions with ultrahigh reverse rectification ratio and high photosensitivity. Adv Funct Mater, 2019, 29, 1900314 doi: 10.1002/adfm.201900314[24] Tonndorf P, Schmidt R, Böttger P, et al. Photoluminescence emission and Raman response of monolayer MoS2, MoSe2, and WSe2. Opt Express, 2013, 21, 4908 doi: 10.1364/OE.21.004908[25] Hafeez M, Gan L, Li H Q, et al. Chemical vapor deposition synthesis of ultrathin hexagonal ReSe2 flakes for anisotropic Raman property and optoelectronic application. Adv Mater, 2016, 28, 8296 doi: 10.1002/adma.201601977[26] Luo M, Wu F, Zhang L L, et al. Detection of polarized light using two-dimensional atomic materials. Journal of Nantong University (Natural Science Edition), 2019, 18, 1 (in Chinese) -
Proportional views