Citation: |
Min Liu, Ziteng Cai, Jian Liu, Nanjian Wu, Liyuan Liu. Exploration of high-speed 3.0 THz imaging with a 65 nm CMOS process[J]. Journal of Semiconductors, 2023, 44(10): 102401. doi: 10.1088/1674-4926/44/10/102401
****
M Liu, Z T Cai, J Liu, N J Wu, L Y Liu. Exploration of high-speed 3.0 THz imaging with a 65 nm CMOS process[J]. J. Semicond, 2023, 44(10): 102401. doi: 10.1088/1674-4926/44/10/102401
|
Exploration of high-speed 3.0 THz imaging with a 65 nm CMOS process
DOI: 10.1088/1674-4926/44/10/102401
More Information
-
Abstract
This paper describes a promising route for the exploration and development of 3.0 THz sensing and imaging with FET-based power detectors in a standard 65 nm CMOS process. Based on the plasma-wave theory proposed by Dyakonov and Shur, we designed high-responsivity and low-noise multiple detectors for monitoring a pulse-mode 3.0 THz quantum cascade laser (QCL). Furthermore, we present a fully integrated high-speed 32 × 32-pixel 3.0 THz CMOS image sensor (CIS). The full CIS measures 2.81 × 5.39 mm2 and achieves a 423 V/W responsivity (Rv) and a 5.3 nW integral noise equivalent power (NEP) at room temperature. In experiments, we demonstrate a testing speed reaching 319 fps under continuous-wave (CW) illumination of a 3.0 THz QCL. The results indicate that our terahertz CIS has excellent potential in cost-effective and commercial THz imaging and material detection. -
References
[1] Su Y R, Ma W B, Yang Y M. Perovskite semiconductors for direct X-ray detection and imaging. J Semicond, 2020, 41, 051204 doi: 10.1088/1674-4926/41/5/051204[2] Sun Q S, He Y Z, Liu K, et al. Recent advances in terahertz technology for biomedical applications. Quant Imaging Med Surg, 2017, 7, 345 doi: 10.21037/qims.2017.06.02[3] Son J H, Oh S J, Cheon H. Potential clinical applications of terahertz radiation. J Appl Phys, 2019, 125, 190901 doi: 10.1063/1.5080205[4] D’Arco A, Di Di Fabrizio M, Dolci V, et al. THz pulsed imaging in biomedical applications. Condens Matter, 2020, 5, 25 doi: 10.3390/condmat5020025[5] Woolard D L, Jensen J O, Hwu R J, et al. Terahertz science and technology for military and security applications. World scinetific, 2007[6] Brun M A, Formanek F, Yasuda A, et al. Terahertz imaging applied to cancer diagnosis. Phys Med Biol, 2010, 55, 4615 doi: 10.1088/0031-9155/55/16/001[7] Zhang H, Sfarra S, Saluja K, et al. Non-destructive investigation of paintings on canvas by continuous wave terahertz imaging and flash thermography. J Nondestruct Eval, 2017, 36, 34 doi: 10.1007/s10921-017-0414-8[8] Kawase K, Shibuya T, Hayashi S, et al. THz imaging techniques for nondestructive inspections. Comptes Rendus Physique, 2010, 11, 510 doi: 10.1016/j.crhy.2010.04.003[9] Steyaert W, Reynaert P. A THz signal source with integrated antenna for non-destructive testing in 28nm bulk CMOS. 2015 IEEE Asian Solid-State Circuits Conference (A-SSCC), 2016, 1 doi: 10.1109/ASSCC.2015.7387436[10] Dyakonov M, Shur M. Shallow water analogy for a ballistic field effect transistor: New mechanism of plasma wave generation by dc current. Phys Rev Lett, 1993, 71, 2465 doi: 10.1103/PhysRevLett.71.2465[11] Ojefors E, Pfeiffer U R, Lisauskas A, et al. A 0.65 THz focal-plane array in a quarter-micron CMOS process technology. IEEE J Solid State Circuits, 2009, 44, 1968 doi: 10.1109/JSSC.2009.2021911[12] Al Hadi R, Sherry H, Grzyb J, et al. A 1 k-pixel video camera for 0.7–1.1 terahertz imaging applications in 65-nm CMOS. IEEE J Solid State Circuits, 2012, 47, 2999 doi: 10.1109/JSSC.2012.2217851[13] Kim D Y, Park S, Han R, et al. 820-GHz imaging array using diode-connected NMOS transistors in 130-nm CMOS. 2013 Symposium on VLSI Circuits, Kyoto, Japan, 2013, C12[14] Lisauskas A, Bauer M, Boppel S, et al. Exploration of terahertz imaging with silicon MOSFETs. J Infrared Milli Terahz Waves, 2014, 35, 63 doi: 10.1007/s10762-013-0047-7[15] Fang T, Dou R J, Liu L Y, et al. A 25 fps 32 × 24 digital CMOS terahertz image sensor. 2018 IEEE Asian Solid-State Circuits Conference (A-SSCC), 2018, 87 doi: 10.1109/ASSCC.2018.8579336[16] Yokoyama S, Ikebe M, Kanazawa Y, et al. 5.8 A 32 × 32-pixel 0.9THz imager with pixel-parallel 12b VCO-based ADC in 0.18μm CMOS. 2019 IEEE International Solid-State Circuits Conference-(ISSCC), 2019, 108 doi: 10.1109/ISSCC.2019.8662483[17] Jain R, Hillger P, Grzyb J, et al. 34.3 A 32 × 32 pixel 0.46-to-0.75THz light-field camera SoC in 0.13μm CMOS. 2021 IEEE International Solid- State Circuits Conference (ISSCC), 2021, 484 doi: 10.1109/ISSCC42613.2021.9365832[18] Zhuo N, Liu F Q, Wang Z G. Quantum cascade lasers: From sketch to mainstream in the mid and far infrared. J Semicond, 2020, 41, 010301 doi: 10.1088/1674-4926/41/1/010301[19] Kindness S J, Jessop D S, Wei B, et al. 100% amplitude modulation of an external cavity terahertz QCL using an optoelectronic chopper based on metamaterials and graphene. 2017 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC), 2017, 1 doi: 10.1109/CLEOE-EQEC.2017.8086346[20] Jin Y, Reno J L, Kumar S. Phase-locked terahertz plasmonic laser array with 2 W output power in a single spectral mode. Optica, OPTICA, 2020, 7, 708 doi: 10.1364/OPTICA.390852[21] Li W J, Ma Y, Xu Y F, et al. Continuous-wave single-mode quantum cascade laser at 5.1 THz based on graded sampled grating design. Photon Res, 2022, 10, 2686 doi: 10.1364/PRJ.467974[22] International Telecommunication Union ITU-R P. 676-11: Attenuation by Atmospheric Gases (ITU, 2016).[23] The HITRAN Database. Accessed on Mar. 2019. [Online]. Available: http://www.cfa.harvard.edu/hitran/[24] Fang T, Liu Z Y, Liu L Y, et al. Detection of 3.0 THz wave with a detector in 65 nm standard CMOS process. 2017 IEEE Asian Solid-State Circuits Conference (A-SSCC), 2017, 189 doi: 10.11972/j.issn.1001-9014.2020.01.009[25] Fang T, Liu L Y, Liu Z Y, et al. A 3.0 THz detector in 65 nm standard CMOS process. J Infrared Millim Waves, 2020, 39, 56 doi: 10.1109/ASSCC.2017.8240248[26] Ikamas K, Lisauskas A, Boppel S, et al. Efficient detection of 3 THz radiation from quantum cascade laser using silicon CMOS detectors. J Infrared Millim Terahertz Waves, 2017, 38, 1183 doi: 10.1007/s10762-017-0407-9[27] Boppel S, Lisauskas A, Mundt M, et al. CMOS integrated antenna-coupled field-effect transistors for the detection of radiation from 0.2 to 4.3 THz. IEEE Trans Microw Theory Tech, 2012, 60, 3834 doi: 10.1109/TMTT.2012.2221732[28] Smith T J, Broome A, Stanley D, et al. A hybrid THz imaging system with a 100-pixel CMOS imager and a 3.25–3.50 THz quantum cascade laser frequency comb. ESSCIRC 2019-IEEE 45th European Solid State Circuits Conference (ESSCIRC), 2019, 151 doi: 10.1109/ESSCIRC.2019.8902823[29] Liu Z Y, Liu L Y, Yang J, et al. A CMOS fully integrated 860-GHz terahertz sensor. IEEE Trans Terahertz Sci Technol, 2017, 7, 455 doi: 10.1109/TTHZ.2017.2692040[30] Knap W, Teppe F, Meziani Y, et al. Plasma wave detection of sub-terahertz and terahertz radiation by silicon field-effect transistors. Appl Phys Lett, 2004, 85, 675 doi: 10.1063/1.1775034[31] Dyakonov M, Shur M. Detection, mixing, and frequency multiplication of terahertz radiation by two-dimensional electronic fluid. IEEE Trans Electron Devices, 1996, 43, 380 doi: 10.1109/16.485650[32] Crowne F J. Microwave response of a high electron mobility transistor in the presence of a Dyakonov–Shur instability. J Appl Phys, 2002, 91, 5377 doi: 10.1063/1.1448891[33] Lisauskas A, Glaab D, Roskos H G, et al. Terahertz imaging with Si MOSFET focal-plane arrays. SPIE OPTO: Integrated Optoelectronic Devices. Proc SPIE 7215, Terahertz Technology and Applications II, 2009, 119 doi: 10.1117/12.809552[34] THORLABS ITC4000 Series Operation Manual, Version 3.9. New Jersey, U. S. A: Thorlabs, Inc. , Jul. 2018.[35] Guo Z J, Yu N M, Wu L S. Column readout circuit with improved offset mismatch and charge sharing for CMOS image sensor. J Semicond, 2019, 40, 122404 doi: 10.1088/1674-4926/40/12/122404[36] Wu R, Huijsing J H, Makinwa K A A. Read-out integrated circuits. Springer, 2012, 137[37] Fang T, Liu M, Liu L Y, et al. A 32 × 32 array terahertz sensor in 65-nm CMOS technology. 2021 IEEE International Conference on Integrated Circuits, Technologies and Applications (ICTA), 2022, 259j doi: 10.1109/ICTA53157.2021.9661999[38] Javadi E, But D B, Ikamas K, et al. Sensitivity of field-effect transistor-based terahertz detectors. Sensors, 2021, 21, 2909 doi: 10.3390/s21092909[39] Ferreras M, Čibiraitė-Lukenskienė D, Lisauskas A, et al. Broadband sensing around 1 THz via a novel biquad-antenna-coupled low-NEP detector in CMOS. IEEE Trans Terahertz Sci Technol, 2021, 11, 16 doi: 10.1109/TTHZ.2020.3031483[40] Zdanevičius J, Bauer M, Boppel S, et al. Camera for high-speed THz imaging. J Infrared Milli Terahz Waves, 2015, 36, 986 doi: 10.1007/s10762-015-0169-1[41] Boukhayma A, Dupret A, Rostaing J P, et al. A low-noise CMOS THz imager based on source modulation and an In-pixel high-Q passive switched-capacitor N-path filter. Sensors (Basel), 2016, 16, 325 doi: 10.3390/s16030325 -
Proportional views