Citation: |
Shiwei Liang, Jun Wang, Fang Fang, Linfeng Deng. Simulation study of a 4H-SiC lateral BJT for monolithic power integration[J]. Journal of Semiconductors, 2018, 39(12): 124004. doi: 10.1088/1674-4926/39/12/124004
****
S W Liang, J Wang, F Fang, L F Deng, Simulation study of a 4H-SiC lateral BJT for monolithic power integration[J]. J. Semicond., 2018, 39(12): 124004. doi: 10.1088/1674-4926/39/12/124004.
|
Simulation study of a 4H-SiC lateral BJT for monolithic power integration
DOI: 10.1088/1674-4926/39/12/124004
More Information
-
Abstract
Power integration based on 4H-SiC is a very promising technology for high-frequency and high-temperature power electronics applications. However, the fabrication processes used in Si BiCMOS technology is not applicable in 4H-SiC at present, and few studies on the monolithic power integration of the SiC signal devices and power devices have been reported. In this paper, we propose a novel lateral BJT structure, which is suitable for monolithically integrating with the vertical power BJT on the same epitaxial wafer at the cost of one additional mask. The signal BJT’s static and dynamic characteristics are comprehensively investigated by TCAD simulation. Simulation results show that the common-emitter current gains of the 4H-SiC signal BJT are 133 and 52 at room temperature and 300 °C, respectively. Its implementation in an inverter shows that its switching time is about 200 ns.-
Keywords:
- SiC BJT,
- integrated circuit,
- current gain,
- power integration
-
References
[1] Neudeck P G, Okojie R S, Chen L Y. High-temperature electronics – a role for wide bandgap semiconductors. Proc IEEE, 2002: 1065[2] Hedayati R, Lanni L, Malm B G, et al. A 500 °C 8-b digital-to-analog converter in silicon carbide bipolar technology. IEEE Trans Electron Devices, 2016, 63(9): 3445 doi: 10.1109/TED.2016.2588418[3] Tian Y, Lanni L, Rusu A, et al. Silicon carbide fully differential amplifier characterized up to 500 °C. IEEE Trans Electron Devices, 2016, 63(6): 2242 doi: 10.1109/TED.2016.2549062[4] Hedayati R, Lanni L, Rodriguez S, et al. A monolithic, 500 °C operational amplifier in 4H-SiC bipolar technology. IEEE Electron Device Lett, 2014, 35(7): 693 doi: 10.1109/LED.2014.2322335[5] Lanni L, Malm B G, Östling M, et al. 500 °C bipolar integrated OR/NOR gate in 4H-SiC. IEEE Electron Device Lett, 2013, 34(9): 1091 doi: 10.1109/LED.2013.2272649[6] Kargarrazi S, Lanni L, Saggini S, et al. 500 °C bipolar SiC linear voltage regulator. IEEE Trans Electron Devices, 2015, 62(6): 1953 doi: 10.1109/TED.2015.2417097[7] Siddiqui A, Elgabra H, Singh S. Design considerations for 4H-SiC lateral BJTs for high temperature logic applications. IEEE J Electron Devices Soc, 2018, 6: 126 doi: 10.1109/JEDS.2017.2785327[8] Neudeck P G, Spry D J, Chen L, et al. Demonstration of 4H-SiC digital integrated circuits above 800 °C. IEEE Electron Device Lett, 2017, 38(8): 1082 doi: 10.1109/LED.2017.2719280[9] Spry D J, Neudeck P G, Chen L, et al. Prolonged 500 °C demonstration of 4H-SiC JFET ICs with two-level interconnect. IEEE Electron Device Lett, 2016, 37(5): 625 doi: 10.1109/LED.2016.2544700[10] Neudeck P G, Spry D J, Chen L, et al. Experimentally observed electrical durability of 4H-SiC JFET ICs operating from 500 °C to 700 °C. 2016 European Conference on Silicon Carbide & Related Materials, 2016: 1[11] Zhang Y X, Sheng K, Su M , et al. Development of 4H-SiC LJFET-based power IC. IEEE Trans Electron Devices, 2008, 55(8): 1934 doi: 10.1109/TED.2008.926676[12] Zhang Y M, Wang C, Zhang Y M, et al. Semi-insulating SiC formed by Vanadium ion implantation. IEEE International Conference on Electron Devices and Solid-State Circuits, 2008: 1[13] Kimoto T, Nakajima T, Matsunami H, et al. Formation of semi-insulating 6H-SiC layers by vanadium ion implantations. Appl Phys Lett, 1996, 69: 1113 doi: 10.1063/1.117075[14] Mitchel W C, Mitchell W D. Vanadium donor and acceptor levels in semi-insulating 4H- and 6H-SiC. J Appl Phys, 2007, 101: 013707 doi: 10.1063/1.2407263[15] Berthou M, Godignon P, Millán J. Monolithically integrated temperature sensor in silicon carbide power MOSFETs. IEEE Trans Power Electron, 2014, 29(9): 4970 doi: 10.1109/TPEL.2013.2289013[16] Alexandru M, Banu V, Montserrat J, et al. Monolithic integration of high temperature silicon carbide integrated circuits. ECS Trans, 2013, 58(4): 375 doi: 10.1149/05804.0375ecst[17] Elgabra H, Siddiqui A, Singh S. Simulation of conventional bipolar logic technologies in 4H-SiC for harsh environment applications. Jpn J Appl Phys, 2016, 55(4S): 1[18] Singh S. High-performance TTL bipolar integrated circuits in 4H-SiC. PhD Dissertation, Purdue University, 2010[19] Morisette D. Development of robust power Schottky barrier diodes in silicon carbide. PhD Dissertation, Purdue University, 2001[20] NSM Archive—Silicon Carbide (SiC)—Recombination Parameters. [Online]. Available: http://www.ioffe.ru/SVA/NSM/Semicond/SiC/recombination.html. 2017 -
Proportional views