Citation: |
Junyao Ji, Xinao Ji, Ziyu Zhou, Zhichao Dai, Xuhui Chen, Jie Zhang, Zheng Jiang, Hong Zhang. A 16-bit 18-MSPS flash-assisted SAR ADC with hybrid synchronous and asynchronous control logic[J]. Journal of Semiconductors, 2024, 45(6): 062201. doi: 10.1088/1674-4926/23120049
J Y Ji, X A Ji, Z Y Zhou, Z C Dai, X H Chen, J Zhang, Z Jiang, and H Zhang, A 16-bit 18-MSPS flash-assisted SAR ADC with hybrid synchronous and asynchronous control logic[J]. J. Semicond., 2024, 45(6), 062201 doi: 10.1088/1674-4926/23120049
Export: BibTex EndNote
|
A 16-bit 18-MSPS flash-assisted SAR ADC with hybrid synchronous and asynchronous control logic
doi: 10.1088/1674-4926/23120049
More Information-
Abstract
This paper presents a 16-bit, 18-MSPS (million samples per second) flash-assisted successive-approximation-register (SAR) analog-to-digital converter (ADC) utilizing hybrid synchronous and asynchronous (HYSAS) timing control logic based on an on-chip delay-locked loop (DLL). The HYSAS scheme can provide a longer settling time for the capacitive digital-to-analog converter (CDAC) than the synchronous and asynchronous SAR ADC. Therefore, the issue of incomplete settling or ringing in the DAC voltage for cases of either on-chip or off-chip reference voltage can be solved to a large extent. In addition, the foreground calibration of the CDAC’s mismatch is performed with a finite-impulse-response bandpass filter (FIR-BPF) based least-mean-square (LMS) algorithm in an off-chip FPGA (field programmable gate array). Fabricated in 40-nm CMOS process, the prototype ADC achieves 94.02-dB spurious-free dynamic range (SFDR), and 75.98-dB signal-to-noise-and-distortion ratio (SNDR) for a 2.88-MHz input under 18-MSPS sampling rate.-
Keywords:
- SAR ADC,
- control logic,
- reference ringing,
- DAC incomplete settling
-
References
[1] Harpe P. Successive approximation analog-to-digital converters: Improving power efficiency and conversion speed. IEEE Solid State Circuits Mag, 2016, 8, 64 doi: 10.1109/MSSC.2016.2573978[2] Liu J X, Tang X Y, Shen L X, et al. Error suppression techniques for energy-efficient high-resolution SAR ADCs. J Semicond, 2020, 41, 111403 doi: 10.1088/1674-4926/41/11/111403[3] Luo H R, Zhao X L, Jiao Z H, et al. A 16-bit, ±10-V input range SAR ADC with a 5-V supply voltage and mixed-signal nonlinearity calibration. Chin J Electronics, 2022, 31, 690 doi: 10.1049/cje.2021.00.057[4] Pan X X, Zhou X, Chang S, et al. A 12-bit 30-MS/s VCO-based SAR ADC with NOC-assisted multiple adaptive bypass windows. J Semicond, 2020, 41, 112401 doi: 10.1088/1674-4926/41/11/112401[5] Zhang B C, Yao B B, Liu L Y, et al. High power-efficient asynchronous SAR ADC for IoT devices. J Semicond, 2017, 38, 105001 doi: 10.1088/1674-4926/38/10/105001[6] He X J, Gu X, Li W T, et al. An 11-bit 200 MS/s subrange SAR ADC with low-cost integrated reference buffer. J Semicond, 2017, 38, 105007 doi: 10.1088/1674-4926/38/10/105007[7] Guo X F, Ye F, Ren J Y. A 9 b/12 b 50 MS/s experimental ADC with continuous approximation architecture in 65 nm CMOS. J Semicond, 2016, 37, 105003 doi: 10.1088/1674-4926/37/10/105003[8] Jiao Z H, Chen Y, Su X B, et al. A configurable noise-shaping band-pass SAR ADC with two-stage clock-controlled amplifier. IEEE Trans Circuits Syst I Regul Pap, 2020, 67, 3728 doi: 10.1109/TCSI.2020.3012998[9] Doris K, Janssen E, Nani C, et al. A 480 mW 2.6 GS/s 10b time-interleaved ADC with 48.5 dB SNDR up to nyquist in 65 nm CMOS. IEEE J Solid State Circuits, 2011, 46, 2821 doi: 10.1109/JSSC.2011.2164961[10] Zhang H, Hassan A, Chen P, et al. Estimation of broadband time-interleaved ADC’s impairments and performance using only single-tone measurements. IEEE Access, 2022, 10, 50403 doi: 10.1109/ACCESS.2022.3173651[11] Li D Q, Zhu Z M, Liu J X, et al. A 7-bit 900-MS/s 2-Then-3-bit/cycle SAR ADC with background offset calibration. IEEE J Solid-State Circuits, 2020, 55, 3051 doi: 10.1109/JSSC.2020.3011753[12] Zhang H S, Zhang H, Song Y, et al. A 10-bit 200-ks/s 1.76-μw SAR ADC with hybrid cap-mos dac for energy-limited applications. IEEE Trans Circuits Syst I Regul Pap, 2019, 66, 1716 doi: 10.1109/TCSI.2019.2899162[13] Ali A M A, Dinc H, Bhoraskar P, et al. A 14 bit 1 GS/s RF sampling pipelined ADC with background calibration. IEEE J Solid-State Circuits, 2014, 49, 2857 doi: 10.1109/JSSC.2014.2361339[14] Miki T, Morie T, Matsukawa K, et al. A 4.2 mW 50 ms/s 13 bit CMOS SAR ADC with SNR and SFDR enhancement techniques. IEEE J Solid-State Circuits, 2015, 50, 1372 doi: 10.1109/JSSC.2015.2417803[15] Kramer M J, Janssen E, Doris K, et al. A 14 b 35 MS/s SAR ADC achieving 75 dB SNDR and 99 dB SFDR with loop-embedded input buffer in 40 nm CMOS. IEEE J Solid-State Circuits, 2015, 50, 2891 doi: 10.1109/JSSC.2015.2463110[16] Shen J H, Shikata A, Fernando L D, et al. A 16-bit 16-MS/s SAR ADC with on-chip calibration in 55-nm CMOS. IEEE J Solid-State Circuits, 2018, 53, 1149 doi: 10.1109/JSSC.2017.2784761[17] Liu J X, Tang X Y, Zhao W D, et al. A 13-bit 0.005-mm2 40-MS/s SAR ADC with kT/C noise cancellation. IEEE J Solid-State Circuits, 2020, 55, 3260 doi: 10.1109/JSSC.2020.3016656[18] Zhang X, Cao X D, Zhang X L. A 16-bit 1 MSPS SAR ADC with foreground calibration and residual voltage shift strategy. J Semicond, 2020, 41, 122401 doi: 10.1088/1674-4926/41/12/122401[19] Cao C, Zhu Z M. High-resolution 1 MS/s sub-2 radix split-capacitor SAR ADC. J Semicond, 2017, 38, 105008 doi: 10.1088/1674-4926/38/10/105008[20] Li C, Chan C H, Zhu Y, et al. Analysis of reference error in high-speed SAR ADCs with capacitive DAC. IEEE Trans Circuits Syst I Regul Pap, 2019, 66, 82 doi: 10.1109/TCSI.2018.2861835[21] Tang X Y, Shen L X, Kasap B, et al. An energy-efficient comparator with dynamic floating inverter amplifier. IEEE J Solid-State Circuits, 2020, 55, 1011 doi: 10.1109/JSSC.2019.2960485[22] Zhang H R, Li N N, Wang J F, et al. A 1.25-MHz-BW, 83-dB SNDR pipelined noise-shaping SAR ADC with mash 2-2 structure and kt/C noise cancellation. IEEE Trans Circuits Syst II Express Briefs, 2023, 70, 3872 doi: 10.1109/TCSII.2023.3289860[23] Jiao Z H, Luo H R, Zhang J, et al. An 84dB-SNDR 1-0 quasi-MASH NS SAR with LSB repeating and 12-bit bridge-crossing segmented CDAC. 2023 IEEE Custom Integrated Circuits Conference (CICC). San Antonio, TX, USA, IEEE, 2023, 1 doi: 10.1109/CICC57935.2023.10121259[24] Zhang H R, Wang X F, Li N N, et al. A 2.5-mhz bw, 75-dB SNDR noise-shaping SAR ADC with a 1st-order hybrid EF-CIFF structure assisted by unity-gain buffer. IEEE Trans Very Large Scale Integr VLSI Syst, 2022, 30, 1928 doi: 10.1109/TVLSI.2022.3213365[25] Bankman D, Yu A, Zheng K, et al. Understanding metastability in SAR ADCs: Part I: Synchronous. IEEE Solid-State Circuits Mag, 2019, 11, 86 doi: 10.1109/MSSC.2019.2910647[26] Yu A, Bankman D, Zheng K, et al. Understanding metastability in SAR ADCs: Part ii: Asynchronous. IEEE Solid-State Circuits Mag, 2019, 11, 16 doi: 10.1109/MSSC.2019.2922890[27] Waters A, Muhlestein J, Moon U K. Analysis of metastability errors in asynchronous SAR ADCs. 2015 IEEE International Conference on Electronics, Circuits, and Systems (ICECS). Cairo, Egypt, IEEE, 2015, 547 doi: 10.1109/ICECS.2015.7440375[28] Zhu Y, Chan C H, Chio U F, et al. A 10-bit 100-MS/s reference-free SAR ADC in 90 nm CMOS. IEEE J Solid-State Circuits, 2010, 45, 1111 doi: 10.1109/JSSC.2010.2048498[29] Zhang W P, Tong X. Noise modeling and analysis of SAR ADCs. IEEE Trans Very Large Scale Integr VLSI Syst, 2015, 23, 2922 doi: 10.1109/TVLSI.2014.2379613[30] Obata K, Matsukawa K, Miki T, et al. A 97.99 dB SNDR, 2 kHz BW, 37.1 µW noise-shaping SAR ADC with dynamic element matching and modulation dither effect. 2016 IEEE Symposium on VLSI Circuits (VLSI-Circuits). Honolulu, HI, USA, IEEE, 2016, 1 doi: 10.1109/VLSIC.2016.7573463[31] Kim T, Chae Y. A 2Mhz bw buffer-embedded noise-shaping SAR ADC achieving 73.8dB SNDR and 87.3dB SFDR. 2019 IEEE Custom Integrated Circuits Conference (CICC). Austin, TX, USA, IEEE, 2019, 1 doi: 10.1109/CICC.2019.8780230[32] Shu Y S, Kuo L T, Lo T Y. An oversampling SAR ADC with DAC mismatch error shaping achieving 105 dB SFDR and 101 dB SNDR over 1 kHz BW in 55 nm CMOS. IEEE J Solid State Circuits, 2016, 51, 2928 doi: 10.1109/JSSC.2016.2592623[33] McNeill J A, Chan K Y, Coln M C W, et al. All-digital background calibration of a successive approximation ADC using the “split ADC” architecture. IEEE Trans Circuits Syst I Regul Pap, 2011, 58, 2355 doi: 10.1109/TCSI.2011.2123590[34] Lan Z C, Dong L, Jing X X, et al. A 12-bit 100MS/s SAR ADC with digital error correction and high-speed LMS-based background calibration. 2021 IEEE International Symposium on Circuits and Systems (ISCAS). Daegu, Korea, IEEE, 2021, 1 doi: 10.1109/ISCAS51556.2021.9401172[35] Chen S W M, Brodersen R W. A 6-bit 600-MS/s 5.3-mW asynchronous ADC in 0.13-μm CMOS. IEEE J Solid State Circuits, 2006, 41, 2669 doi: 10.1109/JSSC.2006.884231[36] Liang Y H, Li C Y, Liu S B, et al. A 14-b 20-MS/s 78.8 dB-SNDR energy-efficient SAR ADC with background mismatch calibration and noise-reduction techniques for portable medical ultrasound systems. IEEE Trans Biomed Circuits Syst, 2022, 16, 200 doi: 10.1109/TBCAS.2022.3147954[37] Analog Devices. AD9269-20 datasheet. (2010-02-01)[2024-03-01]. https://www.analog.com/media/en/technical-documentation/data-sheets/ad9269.pdf -
Proportional views