SPECIAL TOPIC ARTICLES

A 16-bit 18-MSPS flash-assisted SAR ADC with hybrid synchronous and asynchronous control logic

Junyao Ji1, Xinao Ji1, Ziyu Zhou1, Zhichao Dai2, Xuhui Chen2, Jie Zhang1, Zheng Jiang2 and Hong Zhang1,

+ Author Affiliations

 Corresponding author: Hong Zhang, hongzhang@xjtu.edu.cn

PDF

Turn off MathJax

Abstract: This paper presents a 16-bit, 18-MSPS (million samples per second) flash-assisted successive-approximation-register (SAR) analog-to-digital converter (ADC) utilizing hybrid synchronous and asynchronous (HYSAS) timing control logic based on an on-chip delay-locked loop (DLL). The HYSAS scheme can provide a longer settling time for the capacitive digital-to-analog converter (CDAC) than the synchronous and asynchronous SAR ADC. Therefore, the issue of incomplete settling or ringing in the DAC voltage for cases of either on-chip or off-chip reference voltage can be solved to a large extent. In addition, the foreground calibration of the CDAC’s mismatch is performed with a finite-impulse-response bandpass filter (FIR-BPF) based least-mean-square (LMS) algorithm in an off-chip FPGA (field programmable gate array). Fabricated in 40-nm CMOS process, the prototype ADC achieves 94.02-dB spurious-free dynamic range (SFDR), and 75.98-dB signal-to-noise-and-distortion ratio (SNDR) for a 2.88-MHz input under 18-MSPS sampling rate.

Key words: SAR ADCcontrol logicreference ringingDAC incomplete settling



[1]
Harpe P. Successive approximation analog-to-digital converters: Improving power efficiency and conversion speed. IEEE Solid State Circuits Mag, 2016, 8, 64 doi: 10.1109/MSSC.2016.2573978
[2]
Liu J X, Tang X Y, Shen L X, et al. Error suppression techniques for energy-efficient high-resolution SAR ADCs. J Semicond, 2020, 41, 111403 doi: 10.1088/1674-4926/41/11/111403
[3]
Luo H R, Zhao X L, Jiao Z H, et al. A 16-bit, ±10-V input range SAR ADC with a 5-V supply voltage and mixed-signal nonlinearity calibration. Chin J Electronics, 2022, 31, 690 doi: 10.1049/cje.2021.00.057
[4]
Pan X X, Zhou X, Chang S, et al. A 12-bit 30-MS/s VCO-based SAR ADC with NOC-assisted multiple adaptive bypass windows. J Semicond, 2020, 41, 112401 doi: 10.1088/1674-4926/41/11/112401
[5]
Zhang B C, Yao B B, Liu L Y, et al. High power-efficient asynchronous SAR ADC for IoT devices. J Semicond, 2017, 38, 105001 doi: 10.1088/1674-4926/38/10/105001
[6]
He X J, Gu X, Li W T, et al. An 11-bit 200 MS/s subrange SAR ADC with low-cost integrated reference buffer. J Semicond, 2017, 38, 105007 doi: 10.1088/1674-4926/38/10/105007
[7]
Guo X F, Ye F, Ren J Y. A 9 b/12 b 50 MS/s experimental ADC with continuous approximation architecture in 65 nm CMOS. J Semicond, 2016, 37, 105003 doi: 10.1088/1674-4926/37/10/105003
[8]
Jiao Z H, Chen Y, Su X B, et al. A configurable noise-shaping band-pass SAR ADC with two-stage clock-controlled amplifier. IEEE Trans Circuits Syst I Regul Pap, 2020, 67, 3728 doi: 10.1109/TCSI.2020.3012998
[9]
Doris K, Janssen E, Nani C, et al. A 480 mW 2.6 GS/s 10b time-interleaved ADC with 48.5 dB SNDR up to nyquist in 65 nm CMOS. IEEE J Solid State Circuits, 2011, 46, 2821 doi: 10.1109/JSSC.2011.2164961
[10]
Zhang H, Hassan A, Chen P, et al. Estimation of broadband time-interleaved ADC’s impairments and performance using only single-tone measurements. IEEE Access, 2022, 10, 50403 doi: 10.1109/ACCESS.2022.3173651
[11]
Li D Q, Zhu Z M, Liu J X, et al. A 7-bit 900-MS/s 2-Then-3-bit/cycle SAR ADC with background offset calibration. IEEE J Solid-State Circuits, 2020, 55, 3051 doi: 10.1109/JSSC.2020.3011753
[12]
Zhang H S, Zhang H, Song Y, et al. A 10-bit 200-ks/s 1.76-μw SAR ADC with hybrid cap-mos dac for energy-limited applications. IEEE Trans Circuits Syst I Regul Pap, 2019, 66, 1716 doi: 10.1109/TCSI.2019.2899162
[13]
Ali A M A, Dinc H, Bhoraskar P, et al. A 14 bit 1 GS/s RF sampling pipelined ADC with background calibration. IEEE J Solid-State Circuits, 2014, 49, 2857 doi: 10.1109/JSSC.2014.2361339
[14]
Miki T, Morie T, Matsukawa K, et al. A 4.2 mW 50 ms/s 13 bit CMOS SAR ADC with SNR and SFDR enhancement techniques. IEEE J Solid-State Circuits, 2015, 50, 1372 doi: 10.1109/JSSC.2015.2417803
[15]
Kramer M J, Janssen E, Doris K, et al. A 14 b 35 MS/s SAR ADC achieving 75 dB SNDR and 99 dB SFDR with loop-embedded input buffer in 40 nm CMOS. IEEE J Solid-State Circuits, 2015, 50, 2891 doi: 10.1109/JSSC.2015.2463110
[16]
Shen J H, Shikata A, Fernando L D, et al. A 16-bit 16-MS/s SAR ADC with on-chip calibration in 55-nm CMOS. IEEE J Solid-State Circuits, 2018, 53, 1149 doi: 10.1109/JSSC.2017.2784761
[17]
Liu J X, Tang X Y, Zhao W D, et al. A 13-bit 0.005-mm2 40-MS/s SAR ADC with kT/C noise cancellation. IEEE J Solid-State Circuits, 2020, 55, 3260 doi: 10.1109/JSSC.2020.3016656
[18]
Zhang X, Cao X D, Zhang X L. A 16-bit 1 MSPS SAR ADC with foreground calibration and residual voltage shift strategy. J Semicond, 2020, 41, 122401 doi: 10.1088/1674-4926/41/12/122401
[19]
Cao C, Zhu Z M. High-resolution 1 MS/s sub-2 radix split-capacitor SAR ADC. J Semicond, 2017, 38, 105008 doi: 10.1088/1674-4926/38/10/105008
[20]
Li C, Chan C H, Zhu Y, et al. Analysis of reference error in high-speed SAR ADCs with capacitive DAC. IEEE Trans Circuits Syst I Regul Pap, 2019, 66, 82 doi: 10.1109/TCSI.2018.2861835
[21]
Tang X Y, Shen L X, Kasap B, et al. An energy-efficient comparator with dynamic floating inverter amplifier. IEEE J Solid-State Circuits, 2020, 55, 1011 doi: 10.1109/JSSC.2019.2960485
[22]
Zhang H R, Li N N, Wang J F, et al. A 1.25-MHz-BW, 83-dB SNDR pipelined noise-shaping SAR ADC with mash 2-2 structure and kt/C noise cancellation. IEEE Trans Circuits Syst II Express Briefs, 2023, 70, 3872 doi: 10.1109/TCSII.2023.3289860
[23]
Jiao Z H, Luo H R, Zhang J, et al. An 84dB-SNDR 1-0 quasi-MASH NS SAR with LSB repeating and 12-bit bridge-crossing segmented CDAC. 2023 IEEE Custom Integrated Circuits Conference (CICC). San Antonio, TX, USA, IEEE, 2023, 1 doi: 10.1109/CICC57935.2023.10121259
[24]
Zhang H R, Wang X F, Li N N, et al. A 2.5-mhz bw, 75-dB SNDR noise-shaping SAR ADC with a 1st-order hybrid EF-CIFF structure assisted by unity-gain buffer. IEEE Trans Very Large Scale Integr VLSI Syst, 2022, 30, 1928 doi: 10.1109/TVLSI.2022.3213365
[25]
Bankman D, Yu A, Zheng K, et al. Understanding metastability in SAR ADCs: Part I: Synchronous. IEEE Solid-State Circuits Mag, 2019, 11, 86 doi: 10.1109/MSSC.2019.2910647
[26]
Yu A, Bankman D, Zheng K, et al. Understanding metastability in SAR ADCs: Part ii: Asynchronous. IEEE Solid-State Circuits Mag, 2019, 11, 16 doi: 10.1109/MSSC.2019.2922890
[27]
Waters A, Muhlestein J, Moon U K. Analysis of metastability errors in asynchronous SAR ADCs. 2015 IEEE International Conference on Electronics, Circuits, and Systems (ICECS). Cairo, Egypt, IEEE, 2015, 547 doi: 10.1109/ICECS.2015.7440375
[28]
Zhu Y, Chan C H, Chio U F, et al. A 10-bit 100-MS/s reference-free SAR ADC in 90 nm CMOS. IEEE J Solid-State Circuits, 2010, 45, 1111 doi: 10.1109/JSSC.2010.2048498
[29]
Zhang W P, Tong X. Noise modeling and analysis of SAR ADCs. IEEE Trans Very Large Scale Integr VLSI Syst, 2015, 23, 2922 doi: 10.1109/TVLSI.2014.2379613
[30]
Obata K, Matsukawa K, Miki T, et al. A 97.99 dB SNDR, 2 kHz BW, 37.1 µW noise-shaping SAR ADC with dynamic element matching and modulation dither effect. 2016 IEEE Symposium on VLSI Circuits (VLSI-Circuits). Honolulu, HI, USA, IEEE, 2016, 1 doi: 10.1109/VLSIC.2016.7573463
[31]
Kim T, Chae Y. A 2Mhz bw buffer-embedded noise-shaping SAR ADC achieving 73.8dB SNDR and 87.3dB SFDR. 2019 IEEE Custom Integrated Circuits Conference (CICC). Austin, TX, USA, IEEE, 2019, 1 doi: 10.1109/CICC.2019.8780230
[32]
Shu Y S, Kuo L T, Lo T Y. An oversampling SAR ADC with DAC mismatch error shaping achieving 105 dB SFDR and 101 dB SNDR over 1 kHz BW in 55 nm CMOS. IEEE J Solid State Circuits, 2016, 51, 2928 doi: 10.1109/JSSC.2016.2592623
[33]
McNeill J A, Chan K Y, Coln M C W, et al. All-digital background calibration of a successive approximation ADC using the “split ADC” architecture. IEEE Trans Circuits Syst I Regul Pap, 2011, 58, 2355 doi: 10.1109/TCSI.2011.2123590
[34]
Lan Z C, Dong L, Jing X X, et al. A 12-bit 100MS/s SAR ADC with digital error correction and high-speed LMS-based background calibration. 2021 IEEE International Symposium on Circuits and Systems (ISCAS). Daegu, Korea, IEEE, 2021, 1 doi: 10.1109/ISCAS51556.2021.9401172
[35]
Chen S W M, Brodersen R W. A 6-bit 600-MS/s 5.3-mW asynchronous ADC in 0.13-μm CMOS. IEEE J Solid State Circuits, 2006, 41, 2669 doi: 10.1109/JSSC.2006.884231
[36]
Liang Y H, Li C Y, Liu S B, et al. A 14-b 20-MS/s 78.8 dB-SNDR energy-efficient SAR ADC with background mismatch calibration and noise-reduction techniques for portable medical ultrasound systems. IEEE Trans Biomed Circuits Syst, 2022, 16, 200 doi: 10.1109/TBCAS.2022.3147954
[37]
Analog Devices. AD9269-20 datasheet. (2010-02-01)[2024-03-01]. https://www.analog.com/media/en/technical-documentation/data-sheets/ad9269.pdf
Fig. 1.  (Color online) Comparison of reference voltage and control logic schemes (a) synchronous logic with on-chip VREF; (b) synchronous logic with off-chip VREF; (c) timing of asynchronous logic; (d) timing of proposed HYSAS logic.

Fig. 2.  (Color online) Proposed HYSAS SAR control logic for a N-bit SAR ADC.

Fig. 3.  (Color online) The mathematical expectation of the conversion time for each bit of the SAR with asynchronous control logic.

Fig. 4.  (Color online) Simulated waveforms of VREF and differential VDAC for a 16-bit 18-MSPS SAR ADC model.

Fig. 5.  (Color online) Simulated SFDR and SNDR of ADC models with various control logic schemes considering the VREF’s ringing due to bonding inductance.

Fig. 6.  (Color online) Architecture and timing of 16-bit, 18-MSPS SAR ADC with proposed HYSAS control logic.

Fig. 7.  (Color online) Schematic and timing of the low-voltage (1.2 V) auto-zero comparator with a 2-stage preamplifier.

Fig. 8.  (Color online) Structure of the off-chip LMS calibration with FIR-based signal extraction.

Fig. 9.  (Color online) Die photo.

Fig. 10.  (Color online) Power consumption breakdown.

Fig. 11.  (Color online) ADC test-board and calibration FPGA (ZYNQ-7000).

Fig. 12.  (Color online) Measured spectrum for a 2.88-MHz input frequency with (a) FIR-based LMS and (b) fitting-based LMS scheme.

Fig. 13.  (Color online) Measured SNDR/SFDR for 100-kHz input frequency under different sampling rates.

Fig. 14.  Measured INL and DNL for 16-bit resolution after calibration.

Table 1.   Performance summary and comparison.

Parameters This work JSSC’15[15] JSSC’18[16] TBioCAS’22[36] AD9269-20[37]
Tech. (nm) 40 40 55 65 N/A
VDD (V) 1.8/1.2 2.5/1.2 3.3/1.2 3.3/1.2 1.8
Fs (MS/s) 18 35 16 20 20
Res. (bit) 16 14 16 14 16
Full-scale (Vpp,diff) 3.2 3.6 6.6 5 4
SNDR (dB) 76 74.4 78.0 78.8 77.9
SFDR (dB) 94 99 98 95.4 95
Ef. tot. noise* (μV∙rms) 179.3 242.5 293.8 202.3 180.1
DNL (LSB) 0.93
−0.84
0.73
−0.49
0.85
−0.70
0.88
−0.57
0.6
−0.5
INL (LSB) 2.11
−1.27
0.67
−0.86
2.3
−1.9
0.9
−0.87
2.0
−2.0
Power (mW) 10 42.5 16.3 6.8 96.9
FoMS (dB)** 166 161 165 170.5 158
* Ef. tot. noise = ${\sqrt{({V}_{\mathrm{FS}}/2)^{2}/2/10^{\mathrm{SNDR/10}}}} $; **FoMS = SNDR + 10log10(BW/power).
DownLoad: CSV
[1]
Harpe P. Successive approximation analog-to-digital converters: Improving power efficiency and conversion speed. IEEE Solid State Circuits Mag, 2016, 8, 64 doi: 10.1109/MSSC.2016.2573978
[2]
Liu J X, Tang X Y, Shen L X, et al. Error suppression techniques for energy-efficient high-resolution SAR ADCs. J Semicond, 2020, 41, 111403 doi: 10.1088/1674-4926/41/11/111403
[3]
Luo H R, Zhao X L, Jiao Z H, et al. A 16-bit, ±10-V input range SAR ADC with a 5-V supply voltage and mixed-signal nonlinearity calibration. Chin J Electronics, 2022, 31, 690 doi: 10.1049/cje.2021.00.057
[4]
Pan X X, Zhou X, Chang S, et al. A 12-bit 30-MS/s VCO-based SAR ADC with NOC-assisted multiple adaptive bypass windows. J Semicond, 2020, 41, 112401 doi: 10.1088/1674-4926/41/11/112401
[5]
Zhang B C, Yao B B, Liu L Y, et al. High power-efficient asynchronous SAR ADC for IoT devices. J Semicond, 2017, 38, 105001 doi: 10.1088/1674-4926/38/10/105001
[6]
He X J, Gu X, Li W T, et al. An 11-bit 200 MS/s subrange SAR ADC with low-cost integrated reference buffer. J Semicond, 2017, 38, 105007 doi: 10.1088/1674-4926/38/10/105007
[7]
Guo X F, Ye F, Ren J Y. A 9 b/12 b 50 MS/s experimental ADC with continuous approximation architecture in 65 nm CMOS. J Semicond, 2016, 37, 105003 doi: 10.1088/1674-4926/37/10/105003
[8]
Jiao Z H, Chen Y, Su X B, et al. A configurable noise-shaping band-pass SAR ADC with two-stage clock-controlled amplifier. IEEE Trans Circuits Syst I Regul Pap, 2020, 67, 3728 doi: 10.1109/TCSI.2020.3012998
[9]
Doris K, Janssen E, Nani C, et al. A 480 mW 2.6 GS/s 10b time-interleaved ADC with 48.5 dB SNDR up to nyquist in 65 nm CMOS. IEEE J Solid State Circuits, 2011, 46, 2821 doi: 10.1109/JSSC.2011.2164961
[10]
Zhang H, Hassan A, Chen P, et al. Estimation of broadband time-interleaved ADC’s impairments and performance using only single-tone measurements. IEEE Access, 2022, 10, 50403 doi: 10.1109/ACCESS.2022.3173651
[11]
Li D Q, Zhu Z M, Liu J X, et al. A 7-bit 900-MS/s 2-Then-3-bit/cycle SAR ADC with background offset calibration. IEEE J Solid-State Circuits, 2020, 55, 3051 doi: 10.1109/JSSC.2020.3011753
[12]
Zhang H S, Zhang H, Song Y, et al. A 10-bit 200-ks/s 1.76-μw SAR ADC with hybrid cap-mos dac for energy-limited applications. IEEE Trans Circuits Syst I Regul Pap, 2019, 66, 1716 doi: 10.1109/TCSI.2019.2899162
[13]
Ali A M A, Dinc H, Bhoraskar P, et al. A 14 bit 1 GS/s RF sampling pipelined ADC with background calibration. IEEE J Solid-State Circuits, 2014, 49, 2857 doi: 10.1109/JSSC.2014.2361339
[14]
Miki T, Morie T, Matsukawa K, et al. A 4.2 mW 50 ms/s 13 bit CMOS SAR ADC with SNR and SFDR enhancement techniques. IEEE J Solid-State Circuits, 2015, 50, 1372 doi: 10.1109/JSSC.2015.2417803
[15]
Kramer M J, Janssen E, Doris K, et al. A 14 b 35 MS/s SAR ADC achieving 75 dB SNDR and 99 dB SFDR with loop-embedded input buffer in 40 nm CMOS. IEEE J Solid-State Circuits, 2015, 50, 2891 doi: 10.1109/JSSC.2015.2463110
[16]
Shen J H, Shikata A, Fernando L D, et al. A 16-bit 16-MS/s SAR ADC with on-chip calibration in 55-nm CMOS. IEEE J Solid-State Circuits, 2018, 53, 1149 doi: 10.1109/JSSC.2017.2784761
[17]
Liu J X, Tang X Y, Zhao W D, et al. A 13-bit 0.005-mm2 40-MS/s SAR ADC with kT/C noise cancellation. IEEE J Solid-State Circuits, 2020, 55, 3260 doi: 10.1109/JSSC.2020.3016656
[18]
Zhang X, Cao X D, Zhang X L. A 16-bit 1 MSPS SAR ADC with foreground calibration and residual voltage shift strategy. J Semicond, 2020, 41, 122401 doi: 10.1088/1674-4926/41/12/122401
[19]
Cao C, Zhu Z M. High-resolution 1 MS/s sub-2 radix split-capacitor SAR ADC. J Semicond, 2017, 38, 105008 doi: 10.1088/1674-4926/38/10/105008
[20]
Li C, Chan C H, Zhu Y, et al. Analysis of reference error in high-speed SAR ADCs with capacitive DAC. IEEE Trans Circuits Syst I Regul Pap, 2019, 66, 82 doi: 10.1109/TCSI.2018.2861835
[21]
Tang X Y, Shen L X, Kasap B, et al. An energy-efficient comparator with dynamic floating inverter amplifier. IEEE J Solid-State Circuits, 2020, 55, 1011 doi: 10.1109/JSSC.2019.2960485
[22]
Zhang H R, Li N N, Wang J F, et al. A 1.25-MHz-BW, 83-dB SNDR pipelined noise-shaping SAR ADC with mash 2-2 structure and kt/C noise cancellation. IEEE Trans Circuits Syst II Express Briefs, 2023, 70, 3872 doi: 10.1109/TCSII.2023.3289860
[23]
Jiao Z H, Luo H R, Zhang J, et al. An 84dB-SNDR 1-0 quasi-MASH NS SAR with LSB repeating and 12-bit bridge-crossing segmented CDAC. 2023 IEEE Custom Integrated Circuits Conference (CICC). San Antonio, TX, USA, IEEE, 2023, 1 doi: 10.1109/CICC57935.2023.10121259
[24]
Zhang H R, Wang X F, Li N N, et al. A 2.5-mhz bw, 75-dB SNDR noise-shaping SAR ADC with a 1st-order hybrid EF-CIFF structure assisted by unity-gain buffer. IEEE Trans Very Large Scale Integr VLSI Syst, 2022, 30, 1928 doi: 10.1109/TVLSI.2022.3213365
[25]
Bankman D, Yu A, Zheng K, et al. Understanding metastability in SAR ADCs: Part I: Synchronous. IEEE Solid-State Circuits Mag, 2019, 11, 86 doi: 10.1109/MSSC.2019.2910647
[26]
Yu A, Bankman D, Zheng K, et al. Understanding metastability in SAR ADCs: Part ii: Asynchronous. IEEE Solid-State Circuits Mag, 2019, 11, 16 doi: 10.1109/MSSC.2019.2922890
[27]
Waters A, Muhlestein J, Moon U K. Analysis of metastability errors in asynchronous SAR ADCs. 2015 IEEE International Conference on Electronics, Circuits, and Systems (ICECS). Cairo, Egypt, IEEE, 2015, 547 doi: 10.1109/ICECS.2015.7440375
[28]
Zhu Y, Chan C H, Chio U F, et al. A 10-bit 100-MS/s reference-free SAR ADC in 90 nm CMOS. IEEE J Solid-State Circuits, 2010, 45, 1111 doi: 10.1109/JSSC.2010.2048498
[29]
Zhang W P, Tong X. Noise modeling and analysis of SAR ADCs. IEEE Trans Very Large Scale Integr VLSI Syst, 2015, 23, 2922 doi: 10.1109/TVLSI.2014.2379613
[30]
Obata K, Matsukawa K, Miki T, et al. A 97.99 dB SNDR, 2 kHz BW, 37.1 µW noise-shaping SAR ADC with dynamic element matching and modulation dither effect. 2016 IEEE Symposium on VLSI Circuits (VLSI-Circuits). Honolulu, HI, USA, IEEE, 2016, 1 doi: 10.1109/VLSIC.2016.7573463
[31]
Kim T, Chae Y. A 2Mhz bw buffer-embedded noise-shaping SAR ADC achieving 73.8dB SNDR and 87.3dB SFDR. 2019 IEEE Custom Integrated Circuits Conference (CICC). Austin, TX, USA, IEEE, 2019, 1 doi: 10.1109/CICC.2019.8780230
[32]
Shu Y S, Kuo L T, Lo T Y. An oversampling SAR ADC with DAC mismatch error shaping achieving 105 dB SFDR and 101 dB SNDR over 1 kHz BW in 55 nm CMOS. IEEE J Solid State Circuits, 2016, 51, 2928 doi: 10.1109/JSSC.2016.2592623
[33]
McNeill J A, Chan K Y, Coln M C W, et al. All-digital background calibration of a successive approximation ADC using the “split ADC” architecture. IEEE Trans Circuits Syst I Regul Pap, 2011, 58, 2355 doi: 10.1109/TCSI.2011.2123590
[34]
Lan Z C, Dong L, Jing X X, et al. A 12-bit 100MS/s SAR ADC with digital error correction and high-speed LMS-based background calibration. 2021 IEEE International Symposium on Circuits and Systems (ISCAS). Daegu, Korea, IEEE, 2021, 1 doi: 10.1109/ISCAS51556.2021.9401172
[35]
Chen S W M, Brodersen R W. A 6-bit 600-MS/s 5.3-mW asynchronous ADC in 0.13-μm CMOS. IEEE J Solid State Circuits, 2006, 41, 2669 doi: 10.1109/JSSC.2006.884231
[36]
Liang Y H, Li C Y, Liu S B, et al. A 14-b 20-MS/s 78.8 dB-SNDR energy-efficient SAR ADC with background mismatch calibration and noise-reduction techniques for portable medical ultrasound systems. IEEE Trans Biomed Circuits Syst, 2022, 16, 200 doi: 10.1109/TBCAS.2022.3147954
[37]
Analog Devices. AD9269-20 datasheet. (2010-02-01)[2024-03-01]. https://www.analog.com/media/en/technical-documentation/data-sheets/ad9269.pdf
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 715 Times PDF downloads: 132 Times Cited by: 0 Times

    History

    Received: 27 December 2023 Revised: 15 February 2024 Online: Accepted Manuscript: 06 March 2024Uncorrected proof: 14 March 2024Published: 15 June 2024

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Junyao Ji, Xinao Ji, Ziyu Zhou, Zhichao Dai, Xuhui Chen, Jie Zhang, Zheng Jiang, Hong Zhang. A 16-bit 18-MSPS flash-assisted SAR ADC with hybrid synchronous and asynchronous control logic[J]. Journal of Semiconductors, 2024, 45(6): 062201. doi: 10.1088/1674-4926/23120049 J Y Ji, X A Ji, Z Y Zhou, Z C Dai, X H Chen, J Zhang, Z Jiang, and H Zhang, A 16-bit 18-MSPS flash-assisted SAR ADC with hybrid synchronous and asynchronous control logic[J]. J. Semicond., 2024, 45(6), 062201 doi: 10.1088/1674-4926/23120049Export: BibTex EndNote
      Citation:
      Junyao Ji, Xinao Ji, Ziyu Zhou, Zhichao Dai, Xuhui Chen, Jie Zhang, Zheng Jiang, Hong Zhang. A 16-bit 18-MSPS flash-assisted SAR ADC with hybrid synchronous and asynchronous control logic[J]. Journal of Semiconductors, 2024, 45(6): 062201. doi: 10.1088/1674-4926/23120049

      J Y Ji, X A Ji, Z Y Zhou, Z C Dai, X H Chen, J Zhang, Z Jiang, and H Zhang, A 16-bit 18-MSPS flash-assisted SAR ADC with hybrid synchronous and asynchronous control logic[J]. J. Semicond., 2024, 45(6), 062201 doi: 10.1088/1674-4926/23120049
      Export: BibTex EndNote

      A 16-bit 18-MSPS flash-assisted SAR ADC with hybrid synchronous and asynchronous control logic

      doi: 10.1088/1674-4926/23120049
      More Information
      • Junyao Ji got his B.S. degree in microelectronic science and engineering from Xi’an Jiaotong University, Xi’an China, in 2023. His research interests include analog/mixed-signal IC design such as ADC, amplifiers, bandgap references, and so on
      • Xinao Ji got his B.S. from Xi'an Jiaotong University in 2023. Now he is a Master student at Xi'an Jiaotong University under the supervision of Prof. Hong Zhang. His research focuses on mixed signal systems and computing in memory
      • Hong Zhang received the Ph. D. degree in electronic engineering from Xi’an Jiaotong University, Xi’an China, in 2008. Since 2008, he has been with the Department of Microelectronics at Xi’an Jiaotong University, where he is currently a Professor. From June to September 2009, he was a visiting scholar at KU Leuven and IMEC, Belgium. From Aug. 2016 to Aug. 2017, he was a visiting professor in the Department of Electrical and Computer Engineering, University of Toronto. His research interests include analog/mixed-signal IC design such as ADC, low-power and low-voltage references, bio-medical ICs, and so on
      • Corresponding author: hongzhang@xjtu.edu.cn
      • Received Date: 2023-12-27
      • Revised Date: 2024-02-15
      • Available Online: 2024-03-06

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return