Citation: |
Yiling Xie, Baochuang Wang, Dihu Chen, Jianping Guo. An NMOS output-capacitorless low-dropout regulator with dynamic-strength event-driven charge pump[J]. Journal of Semiconductors, 2024, 45(6): 062203. doi: 10.1088/1674-4926/23120057
Y L Xie, B C Wang, D H Chen, and J P Guo, An NMOS output-capacitorless low-dropout regulator with dynamic-strength event-driven charge pump[J]. J. Semicond., 2024, 45(6), 062203 doi: 10.1088/1674-4926/23120057
Export: BibTex EndNote
|
An NMOS output-capacitorless low-dropout regulator with dynamic-strength event-driven charge pump
doi: 10.1088/1674-4926/23120057
More Information-
Abstract
In this paper, an NMOS output-capacitorless low-dropout regulator (OCL-LDO) featuring dual-loop regulation has been proposed, achieving fast transient response with low power consumption. An event-driven charge pump (CP) loop with the dynamic strength control (DSC), is proposed in this paper, which overcomes trade-offs inherent in conventional structures. The presented design addresses and resolves the large signal stability issue, which has been previously overlooked in the event-driven charge pump structure. This breakthrough allows for the full exploitation of the charge-pump structure's potential, particularly in enhancing transient recovery. Moreover, a dynamic error amplifier is utilized to attain precise regulation of the steady-state output voltage, leading to favorable static characteristics. A prototype chip has been fabricated in 65 nm CMOS technology. The measurement results show that the proposed OCL-LDO achieves a 410 nA low quiescent current (IQ) and can recover within 30 ns under 200 mA/10 ns loading change. -
References
[1] Huang M, Lu Y, Martins R P. A comparative study of digital low dropout regulators. J Semicond, 2020, 41, 111405 doi: 10.1088/1674-4926/41/11/111405[2] Burd T D, Pering T A, Stratakos A J, et al. A dynamic voltage scaled microprocessor system. IEEE J Solid-State Circuits, 2000, 35, 1571 doi: 10.1109/4.881202[3] Man T Y, Mok P K T, Chan M S. A high slew-rate push–pull output amplifier for low-quiescent current low-dropout regulators with transient-response improvement. IEEE Trans Circuits Syst II Express Briefs, 2007, 54, 755 doi: 10.1109/TCSII.2007.900347[4] Lam Y H, Ki W H. A 0.9V 0.35 μm adaptively biased CMOS LDO regulator with fast transient response. 2008 IEEE International Solid-State Circuits Conference-Digest of Technical Papers. San Francisco, CA, USA. IEEE, 2008, 442 doi: 10.1109/ISSCC.2008.4523247[5] Ho M, Leung K N, Mak K L. A low-power fast-transient 90-nm low-dropout regulator with multiple small-gain stages. IEEE J Solid-State Circuits, 2010, 45, 2466 doi: 10.1109/JSSC.2010.2072611[6] Guo J P, Leung K N. A 6-μW chip-area-efficient output-capacitorless LDO in 90-nm CMOS technology. IEEE J Solid-State Circuits, 2010, 45, 1896 doi: 10.1109/JSSC.2010.2053859[7] Ming X, Li Q, Zhou Z K, et al. An ultrafast adaptively biased capacitorless LDO with dynamic charging control. IEEE Trans Circuits Syst II Express Briefs, 2012, 59, 40 doi: 10.1109/TCSII.2011.2177698[8] Lu Y, Wang Y P, Pan Q, et al. A fully-integrated low-dropout regulator with full-spectrum power supply rejection. IEEE Trans Circuits Syst I Regul Pap, 2015, 62, 707 doi: 10.1109/TCSI.2014.2380644[9] Lavalle-Aviles F, Torres J, Sánchez-Sinencio E. A high power supply rejection and fast settling time capacitor-less LDO. IEEE Trans Power Electron, 2019, 34, 474 doi: 10.1109/TPEL.2018.2826922[10] Maity A, Patra A. Tradeoffs aware design procedure for an adaptively biased capacitorless low dropout regulator using nested miller compensation. IEEE Trans Power Electron, 2016, 31, 369 doi: 10.1109/TPEL.2015.2398868[11] Huang Y Q, Lu Y, Maloberti F, et al. Nano-ampere low-dropout regulator designs for IoT devices. IEEE Trans Circuits Syst I Regul Pap, 2018, 65, 4017 doi: 10.1109/TCSI.2018.2851226[12] Mandal D, Desai C, Bakkaloglu B, et al. Adaptively biased output cap-less NMOS LDO with 19 ns settling time. IEEE Trans Circuits Syst II Express Briefs, 2019, 66, 167 doi: 10.1109/TCSII.2018.2842642[13] Li G X, Qian H M, Guo J P, et al. Dual active-feedback frequency compensation for output-capacitorless LDO with transient and stability enhancement in 65-nm CMOS. IEEE Trans Power Electron, 2020, 35, 415 doi: 10.1109/TPEL.2019.2910557[14] Cai G G, Lu Y, Zhan C C, et al. A fully integrated FVF LDO with enhanced full-spectrum power supply rejection. IEEE Trans Power Electron, 2021, 36, 4326 doi: 10.1109/TPEL.2020.3024595[15] Song Y, Oh J, Cho S Y, et al. A fast droop-recovery event-driven digital LDO with adaptive linear/binary two-step search for voltage regulation in advanced memory. IEEE Trans Power Electron, 2022, 37, 1189 doi: 10.1109/TPEL.2021.3103611[16] Hsu W Y, Aymerich J, Yang X L, et al. A 0-to-35mA NMOS capacitor-less LDO with dual-loop regulation achieving 3ns response time and 1pF-to-10nF loading range. ESSCIRC 2023-IEEE 49th European Solid State Circuits Conference (ESSCIRC), 2023, 253 doi: 10.1109/ESSCIRC59616.2023.10268699[17] Wang X Y, Mercier P P. A dynamically high-impedance charge-pump-based LDO with digital-LDO-like properties achieving a sub-4-fs FoM. IEEE J Solid-State Circuits, 2020, 55, 719 doi: 10.1109/JSSC.2019.2960004[18] Zhao J M, Gao Y, Zhang T T, et al. A 310-nA quiescent current 3-fs-FoM fully integrated capacitorless time-domain LDO with event-driven charge pump and feedforward transient enhancement. IEEE J Solid-State Circuits, 2021, 56, 2924 doi: 10.1109/JSSC.2021.3077453[19] Han W J, Lee H. A 340-nA-quiescent 80-mA-load 0.02-fs-FOM active-capacitor-based low-dropout regulator in standard 0.18-μm CMOS. IEEE Solid-State Circuits Lett, 2021, 4, 125 doi: 10.1109/LSSC.2021.3089975[20] Huang J R, Wen Y H, Yang T H, et al. A 10 nA ultra-low quiescent current and 60 ns fast transient response low-dropout regulator for internet-of-things. IEEE Trans Circuits Syst I Regul Pap, 2022, 69, 139 doi: 10.1109/TCSI.2021.3093057[21] Baochuang W. A low-power off-chip capacitorless linear regulator with fast transient response. China Patent, CN114460996B, 2023 (in Chinese)[22] Akram M A, Hong W, Hwang I C. Capacitorless self-clocked all-digital low-dropout regulator. IEEE J Solid-State Circuits, 2019, 54, 266 doi: 10.1109/JSSC.2018.2871039 -
Proportional views