Citation: |
Kunyang Ge, Chunjun Liang. Improved efficiency and stability of inverse perovskite solar cells via passivation cleaning[J]. Journal of Semiconductors, 2024, 45(10): 102801. doi: 10.1088/1674-4926/24040033
****
K Y Ge and C J Liang, Improved efficiency and stability of inverse perovskite solar cells via passivation cleaning[J]. J. Semicond., 2024, 45(10), 102801 doi: 10.1088/1674-4926/24040033
|
Improved efficiency and stability of inverse perovskite solar cells via passivation cleaning
DOI: 10.1088/1674-4926/24040033
CSTR: 32376.14.1674-4926.24040033
More Information-
Abstract
Amidst the global energy and environmental crisis, the quest for efficient solar energy utilization intensifies. Perovskite solar cells, with efficiencies over 26% and cost-effective production, are at the forefront of research. Yet, their stability remains a barrier to industrial application. This study introduces innovative strategies to enhance the stability of inverted perovskite solar cells. By bulk and surface passivation, defect density is reduced, followed by a "passivation cleaning" using Apacl amino acid salt and isopropyl alcohol to refine film surface quality. Employing X-ray diffraction (XRD), scanning electron microscope (SEM), and atomic force microscopy (AFM), we confirmed that this process effectively neutralizes surface defects and curbs non-radiative recombination, achieving 22.6% efficiency for perovskite solar cells with the composition Cs0.15FA0.85PbI3. Crucially, the stability of treated cells in long-term tests has been markedly enhanced, laying groundwork for industrial viability. -
References
[1] Liang Z, Zhang Y, Xu H, et al. Homogenizing out-of-plane cation composition in perovskite solar cells. Nature, 2023, 624(7992), 557 doi: 10.1038/s41586-023-06784-0[2] Zhang C, Wang Y, Lin X, et al. Effects of a site doping on the crystallization of perovskite films. J Mater Chem A, 2021, 9(3), 1372 doi: 10.1039/D0TA08656H[3] Gong J, Guo P, Benjamin S E, et al. Cation engineering on lead iodide perovskites for stable and high-performance photovoltaic applications. J Energy Chem, 2018, 27(4), 1017 doi: 10.1016/j.jechem.2017.12.005[4] Knight A J, Borchert J, Oliver R D J, et al. Halide segregation in mixed-halide perovskites: influence of A-site cations. ACS Energy Lett, 2021, 6(2), 799 doi: 10.1021/acsenergylett.0c02475[5] Huang Z, Bai Y, Huang X, et al. Anion–π interactions suppress phase impurities in FAPbI3 solar cells. Nature, 2023, 623(7987), 531 doi: 10.1038/s41586-023-06637-w[6] Tan S, Huang T, Yavuz I, et al. Stability-limiting heterointerfaces of perovskite photovoltaics. Nature, 2022, 605(7909), 268 doi: 10.1038/s41586-022-04604-5[7] Zhang Z, Chen W, Jiang X, et al. Suppression of phase segregation in wide-bandgap perovskites with thiocyanate ions for perovskite/organic tandems with 25.06% efficiency. Nat Energy, 2024, 9, 592 doi: 10.1038/s41560-024-01491-0[8] Saliba M, Matsui T, Seo J Y, et al. Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ Sci, 2016, 9(6), 1989 doi: 10.1039/C5EE03874J[9] Ramos-Terrón S, Illanes J F, Bohoyo-Gil D, et al. Insight into the role of guanidinium and cesium in triple cation lead halide perovskites. Sol RRL, 2021, 5(12), 2100586 doi: 10.1002/solr.202100586[10] Luo C, Zheng G, Gao F, et al. Engineering the buried interface in perovskite solar cells via lattice-matched electron transport layer. Nat Photonics, 2023, 17(10), 856 doi: 10.1038/s41566-023-01247-4[11] Yang W, Ding B, Lin Z, et al. Visualizing interfacial energy offset and defects in efficient 2D/3D heterojunction perovskite solar cells and modules. Adv Mater, 2023, 35(35), 2302071 doi: 10.1002/adma.202302071[12] Kempe M D. Ultraviolet light test and evaluation methods for encapsulants of photovoltaic modules. Sol Energy Mater Sol Cells, 2010, 94(2), 246 doi: 10.1016/j.solmat.2009.09.009[13] Jorgensen G J, Terwilliger K M, DelCueto J A, et al. Moisture transport, adhesion, and corrosion protection of PV module packaging materials. Sol Energy Mater Sol Cells, 2006, 90(16), 2739 doi: 10.1016/j.solmat.2006.04.003[14] Gaulding E A, Louks A E, Yang M, et al. Package development for reliability testing of perovskites. ACS Energy Lett, 2022, 7(8), 2641 doi: 10.1021/acsenergylett.2c01168[15] Li J, Xia R, Qi W, et al. Encapsulation of perovskite solar cells for enhanced stability: Structures, materials and characterization. J Power Sources, 2021, 485, 229313 doi: 10.1016/j.jpowsour.2020.229313[16] Akin S, Arora N, Zakeeruddin S M, et al. New strategies for defect passivation in high-efficiency perovskite solar cells. Adv Energy Mater, 2020, 10(13), 1903090 doi: 10.1002/aenm.201903090[17] Fu L, Li H, Wang L, et al. Defect passivation strategies in perovskites for an enhanced photovoltaic performance. Energy Environ Sci, 2020, 13(11), 4017 doi: 10.1039/D0EE01767A[18] Gao F, Zhao Y, Zhang X, et al. Recent progresses on defect passivation toward efficient perovskite solar cells. Adv Energy Mater, 2020, 10(13), 1902650 doi: 10.1002/aenm.201902650[19] Sun C, Xu L, Lai X, et al. Advanced strategies of passivating perovskite defects for high-performance solar cells. Energy Environ Mater, 2021, 4(3), 293 doi: 10.1002/eem2.12111[20] Zhao Y, Ma F, Qu Z, et al. Inactive (PbI2)2RbCl stabilizes perovskite films for efficient solar cells. Science, 2022, 377(6605), 531 doi: 10.1126/science.abp8873 -
Proportional views