Citation: |
Yingjie Wang, Sen Huang, Qimeng Jiang, Jiaolong Liu, Xinhua Wang, Wen Liu, Liu Wang, Jingyuan Shi, Jie Fan, Xinguo Gao, Haibo Yin, Ke Wei, Xinyu Liu. First demonstration of a self-aligned p-channel GaN back gate injection transistor[J]. Journal of Semiconductors, 2024, 45(11): 112502. doi: 10.1088/1674-4926/24050027
****
Y J Wang, S Huang, Q M Jiang, J L Liu, X H Wang, W Liu, L Wang, J Y Shi, J Fan, X G Gao, H B Yin, K Wei, and X Y Liu, First demonstration of a self-aligned p-channel GaN back gate injection transistor[J]. J. Semicond., 2024, 45(11), 112502 doi: 10.1088/1674-4926/24050027
|
First demonstration of a self-aligned p-channel GaN back gate injection transistor
DOI: 10.1088/1674-4926/24050027
More Information
-
Abstract
In this study, we present the development of self-aligned p-channel GaN back gate injection transistors (SA-BGITs) that exhibit a high ON-state current. This achievement is primarily attributed to the conductivity modulation effect of the 2-D electron gas (2DEG, the back gate) beneath the 2-D hole gas (2DHG) channel. SA-BGITs with a gate length of 1 μm have achieved an impressive peak drain current (ID,MAX) of 9.9 mA/mm. The fabricated SA-BGITs also possess a threshold voltage of 0.15 V, an exceptionally minimal threshold hysteresis of 0.2 V, a high switching ratio of 107, and a reduced ON-resistance (RON) of 548 Ω·mm. Additionally, the SA-BGITs exhibit a steep sub-threshold swing (SS) of 173 mV/dec, further highlighting their suitability for integration into GaN logic circuits.-
Keywords:
- GaN,
- p-FETs,
- self-alignment,
- back gate,
- threshold hysteresis,
- conductivity modulation
-
References
[1] Luo F, Chen Z, Xue L X, et al. Design considerations for GaN HEMT multichip halfbridge module for high-frequency power converters. 2014 IEEE Applied Power Electronics Conference and Exposition-APEC, 2014, 537 doi: 10.1109/APEC.2014.6803361[2] Chen K J, Wei J, Tang G F, et al. Planar GaN power integration-The world is flat. 2020 IEEE International Electron Devices Meeting (IEDM), 2020, 27.1.1 doi: 10.1109/IEDM13553.2020.9372069[3] Du C L, Ye R, Cai X L, et al. A review on GaN HEMTs: nonlinear mechanisms and improvement methods. Journal of Semiconductors, 2023, 44, 121801 doi: 10.1088/1674-4926/44/12/121801[4] Chowdhury N, Xie Q Y, Yuan M Y, et al. First demonstration of a self-aligned GaN p-FET. 2019 IEEE International Electron Devices Meeting (IEDM), 2019, 4.6.1 doi: 10.1109/IEDM19573.2019.8993569[5] Wei J, Zheng Z Y, Tang G F, et al. GaN power integration technology and its future prospects. IEEE Trans Electron Devices, 2024, 71, 1365 doi: 10.1109/TED.2023.3341053[6] Ajayan J, Nirmal D, Mohankumar P, et al. Challenges in material processing and reliability issues in AlGaN/GaN HEMTs on silicon wafers for future RF power electronics & switching applications: A critical review. Materials Science in Semiconductor Processing, 2022, 151, 106982 doi: 10.1016/j.mssp.2022.106982[7] Mounika B, Ajayan J, Bhattacharya S, et al. Recent developments in materials, architectures and processing of AlGaN/GaN HEMTs for future RF and power electronic applications: A critical review. Micro Nanostruct, 2022, 168, 207317 doi: 10.1016/j.micrna.2022.207317[8] Zheng Z Y, Zhang L, Song W J, et al. Gallium nitride-based complementary logic integrated circuits. Nat Electron, 2021, 4, 595 doi: 10.1038/s41928-021-00611-y[9] Chowdhury N, Xie Q Y, Yuan M Y, et al. Regrowth-free GaN-based complementary logic on a Si substrate. IEEE Electron Device Lett, 2020, 41, 820 doi: 10.1109/LED.2020.2987003[10] Ujita S, Kinoshita Y, Umeda H, et al. A compact GaN-based DC-DC converter IC with high-speed gate drivers enabling high efficiencies. 2014 IEEE 26th International Symposium on Power Semiconductor Devices & IC’s (ISPSD), 2014, 51 doi: 10.1109/ISPSD.2014.6855973[11] Zhu M H, Matioli E. Monolithic integration of GaN-based NMOS digital logic gate circuits with E-mode power GaN MOSHEMTs. 2018 IEEE 30th International Symposium on Power Semiconductor Devices and ICs (ISPSD), 2018, 236 doi: 10.1109/ISPSD.2018.8393646[12] Kaufmann U, Schlotter P, Obloh H, et al. Hole conductivity and compensation in epitaxial GaN: Mg layers. Phys Rev B, 2000, 62, 10867 doi: 10.1103/PhysRevB.62.10867[13] Poncé S, Jena D, Giustino F. Hole mobility of strained GaN from first principles. Phys Rev B, 2019, 100, 085204 doi: 10.1103/PhysRevB.100.085204[14] Lancefield D, Eshghi H. Temperature-dependent hole transport in GaN. J Phys: Condens Matter, 2001, 13, 8939 doi: 10.1088/0953-8984/13/40/308[15] Tang J J, Jiang Z H, Wang C C, et al. Bipolar p-FET with enhanced conduction capability on E-mode GaN-on-Si HEMT platform. 2023 IEEE International Electron Devices Meeting (IEDM), 2023, 1 doi: 10.1109/IEDM45741.2023.10413728[16] Raj A, Krishna A, Romanczyk B, et al. GaN/AlGaN superlattice based E-mode hole channel FinFET with Schottky gate. IEEE Electron Device Lett, 2023, 44, 9 doi: 10.1109/LED.2022.3223331[17] Xie Q Y, Yuan M Y, Niroula J, et al. Highly-scaled self-aligned GaN complementary technology on a GaN-on-Si platform. 2022 International Electron Devices Meeting (IEDM), 2022, 35.3.1 doi: 10.1109/IEDM45625.2022.10019401[18] Shinohara K, Regan D, Corrion A, et al. Deeply-scaled self-aligned-gate GaN DH-HEMTs with ultrahigh cutoff frequency. 2011 IEEE International Electron Devices Meeting (IEDM), 2011, 19.1.1 doi: 10.1109/IEDM.2011.6131582[19] Chen T, Zheng Z Y, Feng S R, et al. Endurance improvement of GaN bipolar charge trapping memory with back gate injection. IEEE Electron Device Lett, 2023, 44, 1408 doi: 10.1109/LED.2023.3299961[20] Jin H, Jiang Q M, Huang S, et al. An enhancement-mode GaN p-FET with improved breakdown voltage. IEEE Electron Device Lett, 2022, 43, 1191 doi: 10.1109/LED.2022.3184998[21] Huang S, Jiang Q M, Yang S, et al. Effective passivation of AlGaN/GaN HEMTs by ALD-grown AlN thin film. IEEE Electron Device Lett, 2012, 33, 516 doi: 10.1109/LED.2012.2185921[22] Nakajima A, Liu P C, Ogura M, et al. Generation and transportation mechanisms for two-dimensional hole gases in GaN/AlGaN/GaN double heterostructures. J Appl Phys, 2014, 115, 153707 doi: 10.1063/1.4872242[23] Uemoto Y, Hikita M, Ueno H, et al. Gate injection transistor (GIT)—a normally-off AlGaN/GaN power transistor using conductivity modulation. IEEE Trans Electron Devices, 2007, 54, 3393 doi: 10.1109/TED.2007.908601[24] Bandić Z Z, Bridger P M, Piquette E C, et al. Electron diffusion length and lifetime in p-type GaN. Appl Phys Lett, 1998, 73, 3276 doi: 10.1063/1.122743[25] Bandić Z Z, Bridger P M, Piquette E C, et al. Minority carrier diffusion length and lifetime in GaN. Appl Phys Lett, 1998, 72, 3166 doi: 10.1063/1.121581[26] Hacke P, Nakayama H, Detchprohm T, et al. Deep levels in the upper band-gap region of lightly Mg-doped GaN. Appl Phys Lett, 1996, 68, 1362 doi: 10.1063/1.116080[27] Zhang L, Zheng Z Y, Cheng Y, et al. SiN/in-situ-GaON staggered gate stack on p-GaN for enhanced stability in buried-channel GaN p-FETs. 2021 IEEE International Electron Devices Meeting (IEDM), 2021, 5.3.1 doi: 10.1109/IEDM19574.2021.9720653[28] Wang L, Huang S, Jiang Q M, et al. High threshold voltage stability enhancement-mode GaN p-FETs fabricated with PEALD-AlN gate interfacial layer. IEEE Electron Device Lett, 2024, 45, 320 doi: 10.1109/LED.2024.3354935[29] Spijkman M J, Myny K, Smits E C P, et al. Dual-gate thin-film transistors, integrated circuits and sensors. Adv Mater, 2011, 23, 3231 doi: 10.1002/adma.201101493[30] Wu X Y, Cott D, Lin Z Y, et al. Dual gate synthetic MoS2 MOSFETs with 4.56 µF/cm2 channel capacitance, 320 µS/µm Gm and 420 µA/µm Id at 1 V Vd/100nm Lg. 2021 IEEE International Electron Devices Meeting (IEDM), 2021, 7.4.1 doi: 10.1109/IEDM19574.2021.9720695[31] Chowdhury N, Xie Q Y, Niroula J, et al. Field-induced acceptor ionization in enhancement-mode GaN p-MOSFETs. 2020 IEEE International Electron Devices Meeting (IEDM), 2020, 5.5.1 doi: 10.1109/IEDM13553.2020.9371963[32] Li G W, Wang R H, Song B, et al. Polarization-induced GaN-on-insulator E/D mode p-channel heterostructure FETs. IEEE Electron Device Lett, 2013, 34, 852 doi: 10.1109/LED.2013.2264311[33] Chu R M, Cao Y, Chen M, et al. An experimental demonstration of GaN CMOS technology. IEEE Electron Device Lett, 2016, 37, 269 doi: 10.1109/LED.2016.2515103[34] Li T, Zhang M, Yu J J, et al. Development of enhancement-mode GaN p-FET with post-etch wet treatment on p-GaN gate HEMT epi-wafer. IEEE Trans Electron Devices, 2024, 71, 2361 doi: 10.1109/TED.2024.3365676[35] Su H K, Zhang T, Xu S R, et al. Normally-off p-channel AlGaN/GaN/AlGaN MESFET with high breakdown voltage and ultra-low interface state density. IEEE Electron Device Lett, 2023, 44, 1939 doi: 10.1109/LED.2023.3323497[36] Gao X T, Yu G H, Zhou J A, et al. Study of enhancement-mode GaN pFET with H plasma treated gate recess. J Semicond, 2023, 44, 112801 doi: 10.1088/1674-4926/44/11/112801[37] Jin H, Huang S, Jiang Q M, et al. High-performance enhancement-mode GaN-based p-FETs fabricated with O3-Al2O3/HfO2-stacked gate dielectric. Journal of Semiconductors, 2023, 44, 102801 doi: 10.1088/1674-4926/44/10/102801 -
Proportional views