J. Semicond. >  In Press

REVIEWS

Chalcogenide perovskites—challenges, status, and future prospects

Pidugu Kesavan Kannan1, , Mariappan Anandkumar2 and Gopal Bhavani1

+ Author Affiliations

 Corresponding author: Pidugu Kesavan Kannan, kannan@psgitech.ac.in

DOI: 10.1088/1674-4926/24050029

PDF

Turn off MathJax

Abstract: Perovskites dominate the photovoltaic research community over the last two decades due to its very high absorption coefficient, electron and hole mobility. However, most of the reported solar cells constitute organic perovskites which offer very high efficiency but are highly unstable. Chalcogenide perovskites like BaZrS3, CaZrS3, etc. promise to be a perfect alternate owing to its high stability and mobilities. But, till now no stable photovoltaic device has been successfully fabricated using these materials and the existing challenges present in the synthesis of such perovskites are discussed. Also, the basic thermodynamic aspects that are essential for formation of BaZrS3 are discussed. An extensive review on the precedent literatures and the future direction in the BaZrS3 photovoltaic device research is clearly given.

Key words: chalcogenide perovskitesBaZrS3synthesis and DFT



[1]
Yoo J J, Seo G, Chua M R, et al. Efficient perovskite solar cells via improved carrier management. Nature, 2021, 590, 587 doi: 10.1038/s41586-021-03285-w
[2]
Mariotti S, Köhnen E, Scheler F, et al. Interface engineering for high-performance, triple-halide perovskite-silicon tandem solar cells. Science, 2023, 381, 63 doi: 10.1126/science.adf5872
[3]
Wang Q, Phung N, Di Girolamo D, et al. Enhancement in lifespan of halide perovskite solar cells. Energy Environ Sci, 2019, 12, 865 doi: 10.1039/C8EE02852D
[4]
Xie H B, Lira Cantu M. Multi-component engineering to enable long-term operational stability of perovskite solar cells. J Phys Energy, 2020, 2, 024008 doi: 10.1088/2515-7655/ab8278
[5]
Kannan P K, Anandkumar M. A theoretical investigation to boost the efficiency of CZTS solar cells using SCAPS-1D. Optik, 2023, 288, 171214 doi: 10.1016/j.ijleo.2023.171214
[6]
Wang L, Liu R J, Luan H M, et al. The enhancement of CZTSSe solar cell performance through active construction of the double-layer absorber. Sol Energy Mater Sol Cells, 2024, 266, 112670 doi: 10.1016/j.solmat.2023.112670
[7]
Keller J, Kiselman K, Donzel Gargand O, et al. High-concentration silver alloying and steep back-contact gallium grading enabling copper indium gallium selenide solar cell with 23.6% efficiency. Nat Energy, 2024, 9, 467 doi: 10.1038/s41560-024-01472-3
[8]
Jeong A R, Choi S B, Kim W M, et al. Electrical analysis of c-Si/CGSe monolithic tandem solar cells by using a cell-selective light absorption scheme. Sci Rep, 2017, 7, 15723 doi: 10.1038/s41598-017-15998-y
[9]
Sopiha K V, Comparotto C, Márquez J A, et al. Chalcogenide perovskites: Tantalizing prospects, challenging materials. Adv Optical Mater, 2022, 10, 2101704 doi: 10.1002/adom.202101704
[10]
Tiwari D, Hutter O S, Longo G. Chalcogenide perovskites for photovoltaics: Current status and prospects. J Phys Energy, 2021, 3, 034010 doi: 10.1088/2515-7655/abf41c
[11]
Shannon R D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr Sect A, 1976, 32, 751 doi: 10.1107/S0567739476001551
[12]
Pilania G, Ghosh A, Hartman S T, et al. Anion order in oxysulfide perovskites: Origins and implications. NPJ Comput Mater, 2020, 6, 71 doi: 10.1038/s41524-020-0338-1
[13]
Körbel S, Marques M A L, Botti S. Stability and electronic properties of new inorganic perovskites from high-throughput ab initio calculations. J Mater Chem C, 2016, 4, 3157 doi: 10.1039/C5TC04172D
[14]
Kuhar K, Crovetto A, Pandey M, et al. Sulfide perovskites for solar energy conversion applications: Computational screening and synthesis of the selected compound LaYS3. Energy Environ Sci, 2017, 10, 2579 doi: 10.1039/C7EE02702H
[15]
Adjogri S J, Meyer E L. Chalcogenide perovskites and perovskite-based chalcohalide as photoabsorbers: A study of their properties, and potential photovoltaic applications. Materials, 2021, 14, 7857 doi: 10.3390/ma14247857
[16]
Majumdar A, Adeleke A A, Chakraborty S, et al. Emerging piezochromism in lead free alkaline earth chalcogenide perovskite AZrS3 (a = Mg, Ca, Sr and Ba) under pressure. J Mater Chem C, 2020, 8, 16392 doi: 10.1039/D0TC04516K
[17]
Liu D W, Zeng H H, Peng H, et al. Computational study of the fundamental properties of Zr-based chalcogenide perovskites for optoelectronics. Phys Chem Chem Phys, 2023, 25, 13755 doi: 10.1039/D3CP01522J
[18]
Meng W W, Saparov B, Hong F, et al. Alloying and defect control within chalcogenide perovskites for optimized photovoltaic application. Chem Mater, 2016, 28, 821 doi: 10.1021/acs.chemmater.5b04213
[19]
Nishigaki Y, Nagai T, Nishiwaki M, et al. Extraordinary strong band-edge absorption in distorted chalcogenide perovskites. Sol RRL, 2020, 4, 2070051 doi: 10.1002/solr.202070051
[20]
Sahli F, Werner J, Kamino B A, et al. Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency. Nat Mater, 2018, 17, 820 doi: 10.1038/s41563-018-0115-4
[21]
Hahn H, Mutschke U. Untersuchungen über ternäre chalkogenide. XI. versuche zur darstellung von thioperowskiten. Z Für Anorg Und Allg Chem, 1957, 288, 269 doi: 10.1002/zaac.19572880505
[22]
Lelieveld R, IJdo D J W. Sulphides with the GdFeO3 structure. Acta Crystallogr Sect B, 1980, 36, 2223 doi: 10.1107/S056774088000845X
[23]
Clearfield A. The synthesis and crystal structures of some alkaline earth titanium and zirconium sulfides. Acta Crystallogr, 1963, 16, 135 doi: 10.1107/S0365110X6300030X
[24]
Sun Y Y, Agiorgousis M L, Zhang P H, et al. Chalcogenide perovskites for photovoltaics. Nano Lett, 2015, 15, 581 doi: 10.1021/nl504046x
[25]
Niu S Y, Milam-Guerrero J, Zhou Y C, et al. Thermal stability study of transition metal perovskite sulfides. J Mater Res, 2018, 33, 4135 doi: 10.1557/jmr.2018.419
[26]
Xu J, Fan Y C, Tian W M, et al. Enhancing the optical absorption of chalcogenide perovskite BaZrS3 by optimizing the synthesis and post-processing conditions. J Solid State Chem, 2022, 307, 122872 doi: 10.1016/j.jssc.2021.122872
[27]
Wei X C, Hui H L, Perera S, et al. Ti-alloying of BaZrS3 chalcogenide perovskite for photovoltaics. ACS Omega, 2020, 5, 18579 doi: 10.1021/acsomega.0c00740
[28]
Sharma S, Ward Z, Bhimani K, et al. Bandgap tuning in BaZrS3 perovskite thin films. ACS Appl Electron Mater, 2021, 3, 3306 doi: 10.1021/acsaelm.1c00575
[29]
Gupta T, Ghoshal D, Yoshimura A, et al. An environmentally stable and lead-free chalcogenide perovskite. Adv Funct Mater, 2020, 30, 2001387 doi: 10.1002/adfm.202001387
[30]
Ravi V K, Yu S H, Rajput P K, et al. Colloidal BaZrS3 chalcogenide perovskite nanocrystals for thin film device fabrication. Nanoscale, 2021, 13, 1616 doi: 10.1039/D0NR08078K
[31]
Márquez J A, Rusu M, Hempel H, et al. BaZrS3 chalcogenide perovskite thin films by H2S sulfurization of oxide precursors. J Phys Chem Lett, 2021, 12, 2148 doi: 10.1021/acs.jpclett.1c00177
[32]
Yu Z H, Wei X C, Zheng Y X, et al. Chalcogenide perovskite BaZrS3 thin-film electronic and optoelectronic devices by low temperature processing. Nano Energy, 2021, 85, 105959 doi: 10.1016/j.nanoen.2021.105959
[33]
Comparotto C, Ström P, Donzel Gargand O, et al. Synthesis of BaZrS3 perovskite thin films at a moderate temperature on conductive substrates. ACS Appl Energy Mater, 2022, 5, 6335 doi: 10.1021/acsaem.2c00704
[34]
Pradhan A A, Uible M C, Agarwal S, et al. Synthesis of BaZrS3 and BaHfS3 chalcogenide perovskite films using single-phase molecular precursors at moderate temperatures. Angew Chem Int Ed, 2023, 62, e202301049 doi: 10.1002/anie.202301049
[35]
Vincent K C, Agarwal S, Turnley J W, et al. Liquid flux−assisted mechanism for modest temperature synthesis of large-grain BaZrS3 and BaHfS3 chalcogenide perovskites. Adv Energy Sustain Res, 2023, 4, 2300010 doi: 10.1002/aesr.202300010
[36]
Ramanandan S P, Giunto A, Stutz E Z, et al. Understanding the growth mechanism of BaZrS3 chalcogenide perovskite thin films from sulfurized oxide precursors. J Phys Energy, 2023, 5, 014013 doi: 10.1088/2515-7655/aca9fe
[37]
Dhole S, Wei X C, Hui H L, et al. A facile aqueous solution route for the growth of chalcogenide perovskite BaZrS3 films. Photonics, 2023, 10, 366 doi: 10.3390/photonics10040366
[38]
Romagnoli L, Ciccioli A, Dale P J, et al. A simple synthetic approach to BaZrS3, BaHfS3, and their solid solutions. J Am Ceram Soc, 2024, 107, 698 doi: 10.1111/jace.19506
[39]
Vincent Mercy E N, Srinivasan D, Marasamy L. Emerging BaZrS3 and Ba(Zr, Ti)S3 chalcogenide perovskite solar cells: A numerical approach toward device engineering and unlocking efficiency. ACS Omega, 2024, 9, 4359 doi: 10.1021/acsomega.3c06627
[40]
Najwa C, Mustapha R, Boubker F. Numerical study of BaZrS3 based chalcogenide perovskite solar cell using SCAPS-1D device simulation, 2022, PREPRINT (Version 1) available at Research Square [https://doi.org/10.21203/rs.3.rs-1251663/v1]
[41]
Karthick S, Velumani S, Bouclé J. Chalcogenide BaZrS3 perovskite solar cells: A numerical simulation and analysis using SCAPS-1D. Opt Mater, 2022, 126, 112250 doi: 10.1016/j.optmat.2022.112250
[42]
Goutham Kumar S, Pramod A, Prashanth C R, et al. Proposal for a novel perovskite solar cell based on BaZrS3 with optimized electron and hole transport layer using SCAPS- 1D. Eur Chem Bull, 2023, 12, 10289
[43]
Kumar P, Sharma P. Design and simulation of chalcogenide perovskite BaZr(S, Se)3 compositions for photovoltaic applications. Phys Scr, 2023, 98, 065921 doi: 10.1088/1402-4896/accfc6
[44]
Barman B, Ingole S. Analysis of Si back-contact for chalcogenide perovskite solar cells based on BaZrS3 using SCAPS-1D. Adv Theory Simul, 2023, 6, 2200820 doi: 10.1002/adts.202200820
[45]
Rühle S. Tabulated values of the Shockley-Queisser limit for single junction solar cells. Sol Energy, 2016, 130, 139 doi: 10.1016/j.solener.2016.02.015
Fig. 1.  (Color online) Possible unit cell structures of chalcogenide perovskites[10].

Fig. 2.  (Color online) Formation energies of chalcogenide perovskite with respect to competing phases (Hf) and ground state formation energy (Hg).

Fig. 3.  (Color online) Band structures for AZrS3 (A = Ba, Sr, Ca)[17] (Reproduced with permission from the Royal Society of Chemistry).

Fig. 4.  (Color online) PDOS for AZrS3 (A = Ba, Sr, Ca)[17] (Reproduced with permission from the Royal Society of Chemistry).

Fig. 5.  (Color online) Formation energies of AZr(SSe)3 (A = Ba, Ca, and Sr)[17] (Reproduced with permission from the Royal Society of Chemistry).

Fig. 6.  (Color online) Defect energy states for possible defects in BaZrS3[18] (Reprinted with permission from Meng et al. Copyright [2016] American Chemical Society).

Fig. 7.  (Color online) (a) Absorption spectra of the chalcogenide perovskites. Open circles represent experimental data and solid lines corresponding to DFT result. (b) Comparison of absorption coefficient of chalcogenide perovskites with traditional PV absorbers[19] (Reproduced with permission from the John Wiley and sons).

Fig. 8.  (Color online) (a) Structure of perovskite/c-Si tandem cell. (b) Quantum efficiency of top and bottom cell. (c) Variation of efficiency with respect to thickness of the perovskite[19] (Reproduced with permission from the John Wiley and sons).

Fig. 9.  (Color online) (a) Photographs, (b) surface morphology, and (c) XRD patterns of the BaZrS3 films prepared at various sulfurization temperatures[31] (Reprinted with permission from Marquez et al. Copyright [2021] American Chemical Society).

Table 1.   Computed unit cell parameters of AZrS3 (A = Ca, Sr, Ba) at 0 and 15 GPa[16].

SystemAt 0 GPaAt 15 GPa
abcabc
CaZrS37.079.646.576.879.166.01
SrZrS37.169.836.776.969.416.15
BaZrS37.2710.167.116.959.796.55
DownLoad: CSV

Table 2.   Estimated bandgap of various AZr(SSe)3 (A = Ba, Ca, Sr) with varying S, Se ratios[17].

Compound Eg (eV)
Ba Ca Sr
AZrS3 1.79 1.98 1.99
AZrS2Se 1.55 1.66 1.66
AZrSSe2 1.51 1.52 1.58
AZrSe3 1.34 1.40 1.46
DownLoad: CSV

Table 3.   Electronic properties of AZr(SSe)3 (A = Ba, Ca, and Sr)[17].

Compound me* (m0) mh* (m0) ε Eb (meV)
CaZrS3 0.535 0.686 0.301 77
CaZrS2Se 0.571 0.601 0.293 67
CaZrSSe2 0.449 0.667 0.268 50
CaZrSe3 0.507 0.564 0.267 48
SrZrS3 0.522 0.778 0.312 85
SrZrS2Se 0.483 0.581 0.264 63
SrZrSSe2 0.523 0.938 0.336 71
SrZrSe3 0.516 0.594 0.277 53
BaZrS3 0.534 0.849 0.328 90
BaZrS2Se 0.456 0.610 0.261 63
BaZrSSe2 0.523 0.938 0.336 72
BaZrSe3 0.500 1.097 0.343 65
DownLoad: CSV

Table 4.   Reported synthesis strategies adopted for synthesis of BaZrS3.

S.No. Author Synthesis route Outcomes
1 Hahn and Mutschke [21] Binary sulphides reaction at a very high synthesis temperature Ternary BaZrS3 formed at the boundary of two binary phases, hinder further formation of the ternary phase.
2 Leleiveld et al.[22] Sulfurize a mixture of BaCO3 and ZrO2 in H2S environment at 1373 K Formation of BaZrS3 having a structure identical to gadolinium orthoferrite upon annealing for 24 h.
3 Clearfield et al.[23] Sulfurization Temperatures from 950 to 1200°C at various time periods from 4 to 24 h.
4 Niu et al.[25] Solid state reaction Iodine was used to catalyze the reaction and reduce the synthesis time.
5 Xu et al.[26] Improved sulfurization technique and the conversion rate was proposed as an indicator of the sulfurization level A new sulfurization technique to raise the chemical potential of CS2 is used.
6 Wei et al.[27] Ball milling, followed by sulfurization Synthesized Ti alloyed Ba(Zr1−xTix)S3 powders with x from 0 to 0.1. Structural integrity of the distorted chalcogenide phase is retained till 4%.
7 Sharma et al.[28] Ti-alloyed BaZrS3 films were obtained by sulfurization of Ti-alloyed BaZrO3 films BaZrO3 films were sulfurized in a 3 zone furnace with CS2 and N2 as carrier gas.
8 Ravi et al.[30] Solid-state synthesis BaZrS3 NCs are first prepared using a solid-state synthesis route, and the subsequent surface modifications lead to a colloidal dispersion of NCs in both polar N-methyl-2-pyrrolidinone and non-polar chloroform solvents.
9 Yu et al.[32] Pulsed laser deposition of a BaZrS3 target Synthesis of BaZrS3 thin films at temperatures as low as 500 °C, this is achieved by changing the chemical reaction pathway from sulfurization of oxide perovskites to crystallization of pulsed laser deposited amorphous BaZrSx films.
10 Comparatto et al.[33] Sputtering, Ba−Zr precursor films capped by SnS, sulfurized at under 600 °C for 20 min The partial pressure of sulfur was found to be the key factor in determining the diffusion and crystallization of the precursors.
11 Pradhan et al.[34] Solution processing With a sulfurization at 575 °C for 20 min, the molecular precursors converted into single phase thin films. Increasing sulfurization time results in more intense and higher energy photoluminescence emissions.
12 Vincent et al.[35] Solution processing High-quality thin films of large-grain BaZrS3 perovskites are prepared by solution processing at moderate temperatures. The study discovered that a barium polysulfide liquid flow is crucial for the fast synthesis of the perovskite, and this method was effectively applied to the BaHfS3 perovskite as well.
13 Ramanandan et al.[36] Two-step synthesis mechanism of BaZrS3, involving an intermediary amorphization phase of BaZrO3 They identify sulfur species diffusion within the film as the rate-determining step. The conversion of H2S to the sulfide phase varies significantly with processing temperature.
14 Dhole et al.[37] Polymer-assisted deposition This technique involved the deposition of cation precursor films chelated with polymer, followed by sulfurization in a mixed atmosphere of carbon disulfide and argon.
15 Romagnoli et al.[38] Simple synthetic approach under relatively mild conditions (T = 500 °C) and is complete in a few hours By combining BaS, Zr(Hf), and S powders for 20 min in mortor and pestle and sulfurization.
DownLoad: CSV

Table 5.   Reported solar cell device structures for BaZrS3 photovoltaics.

Device Structure Estimated solar cell characteristics Reference
Voc (V) Jsc (mA/cm2) FF Efficiency (%)
FTO/TiO2/BaZrS3/Spiro-OMeTAD/Au 1.21 16.54 86.26 17.29 [40]
FTO/TiO2/BaZrS3/Cu2O/Au 1.16 12.24 87.13 12.42 [41]
FTO/TiO2/BaZrS3/CuSbS2/W 1.00 22.57 73.7 17.13 [42]
FTO/TiO2/BaZrS3/Spiro-OMeTAD/Au 0.70 22.00 79.40 12.12 [43]
AZO/i-ZnO/CdS/BaZrS3/a-Si 1.31 19.08 78.88 19.72 [44]
FTO/TiO2/BaZrSe3/Spiro-OMeTAD/Au 0.72 46.65 77.32 25.84 [43]
FTO/TiO2/Ba(Zr0.87,Ti0.12)S3/Cu2O/back contact 1.09 26.57 85.78 24.86 [27]
AZO/i-ZnO/CdS/Ba(Zr0.95,Ti0.05)S3/a-Si 1.26 27.06 88.47 30.06 [44]
FTO/ZrS2/BaZrS3/SnS/Pt 1.18 29.74 80.15 28.17 [39]
FTO/ZrS2/Ba(Zr0.96,Ti0.04)S3/SnS/ Pt 1.18 32.26 84.94 32.58 [39]
DownLoad: CSV
[1]
Yoo J J, Seo G, Chua M R, et al. Efficient perovskite solar cells via improved carrier management. Nature, 2021, 590, 587 doi: 10.1038/s41586-021-03285-w
[2]
Mariotti S, Köhnen E, Scheler F, et al. Interface engineering for high-performance, triple-halide perovskite-silicon tandem solar cells. Science, 2023, 381, 63 doi: 10.1126/science.adf5872
[3]
Wang Q, Phung N, Di Girolamo D, et al. Enhancement in lifespan of halide perovskite solar cells. Energy Environ Sci, 2019, 12, 865 doi: 10.1039/C8EE02852D
[4]
Xie H B, Lira Cantu M. Multi-component engineering to enable long-term operational stability of perovskite solar cells. J Phys Energy, 2020, 2, 024008 doi: 10.1088/2515-7655/ab8278
[5]
Kannan P K, Anandkumar M. A theoretical investigation to boost the efficiency of CZTS solar cells using SCAPS-1D. Optik, 2023, 288, 171214 doi: 10.1016/j.ijleo.2023.171214
[6]
Wang L, Liu R J, Luan H M, et al. The enhancement of CZTSSe solar cell performance through active construction of the double-layer absorber. Sol Energy Mater Sol Cells, 2024, 266, 112670 doi: 10.1016/j.solmat.2023.112670
[7]
Keller J, Kiselman K, Donzel Gargand O, et al. High-concentration silver alloying and steep back-contact gallium grading enabling copper indium gallium selenide solar cell with 23.6% efficiency. Nat Energy, 2024, 9, 467 doi: 10.1038/s41560-024-01472-3
[8]
Jeong A R, Choi S B, Kim W M, et al. Electrical analysis of c-Si/CGSe monolithic tandem solar cells by using a cell-selective light absorption scheme. Sci Rep, 2017, 7, 15723 doi: 10.1038/s41598-017-15998-y
[9]
Sopiha K V, Comparotto C, Márquez J A, et al. Chalcogenide perovskites: Tantalizing prospects, challenging materials. Adv Optical Mater, 2022, 10, 2101704 doi: 10.1002/adom.202101704
[10]
Tiwari D, Hutter O S, Longo G. Chalcogenide perovskites for photovoltaics: Current status and prospects. J Phys Energy, 2021, 3, 034010 doi: 10.1088/2515-7655/abf41c
[11]
Shannon R D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr Sect A, 1976, 32, 751 doi: 10.1107/S0567739476001551
[12]
Pilania G, Ghosh A, Hartman S T, et al. Anion order in oxysulfide perovskites: Origins and implications. NPJ Comput Mater, 2020, 6, 71 doi: 10.1038/s41524-020-0338-1
[13]
Körbel S, Marques M A L, Botti S. Stability and electronic properties of new inorganic perovskites from high-throughput ab initio calculations. J Mater Chem C, 2016, 4, 3157 doi: 10.1039/C5TC04172D
[14]
Kuhar K, Crovetto A, Pandey M, et al. Sulfide perovskites for solar energy conversion applications: Computational screening and synthesis of the selected compound LaYS3. Energy Environ Sci, 2017, 10, 2579 doi: 10.1039/C7EE02702H
[15]
Adjogri S J, Meyer E L. Chalcogenide perovskites and perovskite-based chalcohalide as photoabsorbers: A study of their properties, and potential photovoltaic applications. Materials, 2021, 14, 7857 doi: 10.3390/ma14247857
[16]
Majumdar A, Adeleke A A, Chakraborty S, et al. Emerging piezochromism in lead free alkaline earth chalcogenide perovskite AZrS3 (a = Mg, Ca, Sr and Ba) under pressure. J Mater Chem C, 2020, 8, 16392 doi: 10.1039/D0TC04516K
[17]
Liu D W, Zeng H H, Peng H, et al. Computational study of the fundamental properties of Zr-based chalcogenide perovskites for optoelectronics. Phys Chem Chem Phys, 2023, 25, 13755 doi: 10.1039/D3CP01522J
[18]
Meng W W, Saparov B, Hong F, et al. Alloying and defect control within chalcogenide perovskites for optimized photovoltaic application. Chem Mater, 2016, 28, 821 doi: 10.1021/acs.chemmater.5b04213
[19]
Nishigaki Y, Nagai T, Nishiwaki M, et al. Extraordinary strong band-edge absorption in distorted chalcogenide perovskites. Sol RRL, 2020, 4, 2070051 doi: 10.1002/solr.202070051
[20]
Sahli F, Werner J, Kamino B A, et al. Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency. Nat Mater, 2018, 17, 820 doi: 10.1038/s41563-018-0115-4
[21]
Hahn H, Mutschke U. Untersuchungen über ternäre chalkogenide. XI. versuche zur darstellung von thioperowskiten. Z Für Anorg Und Allg Chem, 1957, 288, 269 doi: 10.1002/zaac.19572880505
[22]
Lelieveld R, IJdo D J W. Sulphides with the GdFeO3 structure. Acta Crystallogr Sect B, 1980, 36, 2223 doi: 10.1107/S056774088000845X
[23]
Clearfield A. The synthesis and crystal structures of some alkaline earth titanium and zirconium sulfides. Acta Crystallogr, 1963, 16, 135 doi: 10.1107/S0365110X6300030X
[24]
Sun Y Y, Agiorgousis M L, Zhang P H, et al. Chalcogenide perovskites for photovoltaics. Nano Lett, 2015, 15, 581 doi: 10.1021/nl504046x
[25]
Niu S Y, Milam-Guerrero J, Zhou Y C, et al. Thermal stability study of transition metal perovskite sulfides. J Mater Res, 2018, 33, 4135 doi: 10.1557/jmr.2018.419
[26]
Xu J, Fan Y C, Tian W M, et al. Enhancing the optical absorption of chalcogenide perovskite BaZrS3 by optimizing the synthesis and post-processing conditions. J Solid State Chem, 2022, 307, 122872 doi: 10.1016/j.jssc.2021.122872
[27]
Wei X C, Hui H L, Perera S, et al. Ti-alloying of BaZrS3 chalcogenide perovskite for photovoltaics. ACS Omega, 2020, 5, 18579 doi: 10.1021/acsomega.0c00740
[28]
Sharma S, Ward Z, Bhimani K, et al. Bandgap tuning in BaZrS3 perovskite thin films. ACS Appl Electron Mater, 2021, 3, 3306 doi: 10.1021/acsaelm.1c00575
[29]
Gupta T, Ghoshal D, Yoshimura A, et al. An environmentally stable and lead-free chalcogenide perovskite. Adv Funct Mater, 2020, 30, 2001387 doi: 10.1002/adfm.202001387
[30]
Ravi V K, Yu S H, Rajput P K, et al. Colloidal BaZrS3 chalcogenide perovskite nanocrystals for thin film device fabrication. Nanoscale, 2021, 13, 1616 doi: 10.1039/D0NR08078K
[31]
Márquez J A, Rusu M, Hempel H, et al. BaZrS3 chalcogenide perovskite thin films by H2S sulfurization of oxide precursors. J Phys Chem Lett, 2021, 12, 2148 doi: 10.1021/acs.jpclett.1c00177
[32]
Yu Z H, Wei X C, Zheng Y X, et al. Chalcogenide perovskite BaZrS3 thin-film electronic and optoelectronic devices by low temperature processing. Nano Energy, 2021, 85, 105959 doi: 10.1016/j.nanoen.2021.105959
[33]
Comparotto C, Ström P, Donzel Gargand O, et al. Synthesis of BaZrS3 perovskite thin films at a moderate temperature on conductive substrates. ACS Appl Energy Mater, 2022, 5, 6335 doi: 10.1021/acsaem.2c00704
[34]
Pradhan A A, Uible M C, Agarwal S, et al. Synthesis of BaZrS3 and BaHfS3 chalcogenide perovskite films using single-phase molecular precursors at moderate temperatures. Angew Chem Int Ed, 2023, 62, e202301049 doi: 10.1002/anie.202301049
[35]
Vincent K C, Agarwal S, Turnley J W, et al. Liquid flux−assisted mechanism for modest temperature synthesis of large-grain BaZrS3 and BaHfS3 chalcogenide perovskites. Adv Energy Sustain Res, 2023, 4, 2300010 doi: 10.1002/aesr.202300010
[36]
Ramanandan S P, Giunto A, Stutz E Z, et al. Understanding the growth mechanism of BaZrS3 chalcogenide perovskite thin films from sulfurized oxide precursors. J Phys Energy, 2023, 5, 014013 doi: 10.1088/2515-7655/aca9fe
[37]
Dhole S, Wei X C, Hui H L, et al. A facile aqueous solution route for the growth of chalcogenide perovskite BaZrS3 films. Photonics, 2023, 10, 366 doi: 10.3390/photonics10040366
[38]
Romagnoli L, Ciccioli A, Dale P J, et al. A simple synthetic approach to BaZrS3, BaHfS3, and their solid solutions. J Am Ceram Soc, 2024, 107, 698 doi: 10.1111/jace.19506
[39]
Vincent Mercy E N, Srinivasan D, Marasamy L. Emerging BaZrS3 and Ba(Zr, Ti)S3 chalcogenide perovskite solar cells: A numerical approach toward device engineering and unlocking efficiency. ACS Omega, 2024, 9, 4359 doi: 10.1021/acsomega.3c06627
[40]
Najwa C, Mustapha R, Boubker F. Numerical study of BaZrS3 based chalcogenide perovskite solar cell using SCAPS-1D device simulation, 2022, PREPRINT (Version 1) available at Research Square [https://doi.org/10.21203/rs.3.rs-1251663/v1]
[41]
Karthick S, Velumani S, Bouclé J. Chalcogenide BaZrS3 perovskite solar cells: A numerical simulation and analysis using SCAPS-1D. Opt Mater, 2022, 126, 112250 doi: 10.1016/j.optmat.2022.112250
[42]
Goutham Kumar S, Pramod A, Prashanth C R, et al. Proposal for a novel perovskite solar cell based on BaZrS3 with optimized electron and hole transport layer using SCAPS- 1D. Eur Chem Bull, 2023, 12, 10289
[43]
Kumar P, Sharma P. Design and simulation of chalcogenide perovskite BaZr(S, Se)3 compositions for photovoltaic applications. Phys Scr, 2023, 98, 065921 doi: 10.1088/1402-4896/accfc6
[44]
Barman B, Ingole S. Analysis of Si back-contact for chalcogenide perovskite solar cells based on BaZrS3 using SCAPS-1D. Adv Theory Simul, 2023, 6, 2200820 doi: 10.1002/adts.202200820
[45]
Rühle S. Tabulated values of the Shockley-Queisser limit for single junction solar cells. Sol Energy, 2016, 130, 139 doi: 10.1016/j.solener.2016.02.015
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 519 Times PDF downloads: 90 Times Cited by: 0 Times

    History

    Received: 18 May 2024 Revised: 25 July 2024 Online: Accepted Manuscript: 19 August 2024Uncorrected proof: 20 August 2024

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Pidugu Kesavan Kannan, Mariappan Anandkumar, Gopal Bhavani. Chalcogenide perovskites—challenges, status, and future prospects[J]. Journal of Semiconductors, 2024, In Press. doi: 10.1088/1674-4926/24050029 ****P K Kannan, M Anandkumar, and G Bhavani, Chalcogenide perovskites—challenges, status, and future prospects[J]. J. Semicond., 2024, 45(11), 111801 doi: 10.1088/1674-4926/24050029
      Citation:
      Pidugu Kesavan Kannan, Mariappan Anandkumar, Gopal Bhavani. Chalcogenide perovskites—challenges, status, and future prospects[J]. Journal of Semiconductors, 2024, In Press. doi: 10.1088/1674-4926/24050029 ****
      P K Kannan, M Anandkumar, and G Bhavani, Chalcogenide perovskites—challenges, status, and future prospects[J]. J. Semicond., 2024, 45(11), 111801 doi: 10.1088/1674-4926/24050029

      Chalcogenide perovskites—challenges, status, and future prospects

      DOI: 10.1088/1674-4926/24050029
      More Information
      • Pidugu Kesavan Kannan is a renowned academician and researcher working in the field of Materials Science and Engineering. He received his PhD from the Indian Institute of Technology Hyderabad. At present, he works as an Assistant Professor (Senior Grade) in the Department of Physics at PSG Institute of Technology and Applied Research, Coimbatore, India. Dr. Kannan’s research interest include photovoltaic materials, high entropy oxides, perovskites etc
      • Mariappan Anandkumar is a renowned scientist in the field of Materials Science and Engineering. He received his PhD from the Indian Institute of Technology Hyderabad, India in Metallurgical Engineering. Currently, he works as a senior researcher at the Southern University of Science and Technology (SUSU) in Russia. Dr. Anandkumar’s expertise encompasses the development of advanced nanomaterials and their functional applications. His research focuses on synthesis of high-entropy alloy/oxide nanoparticles and investigating its application in various areas such as photocatalysts, sensors, catalysis, electrochemical sensors, etc. He has published numerous research papers in reputed journals and given presentations at reputed-international conferences
      • Gopal Bhavani received her doctoral degree from Anna University, Tamilnadu, India in 2016. At present, she is working as Assistant Professor in PSG Institute of Technology and Applied research, Coimbatore, India. Her current research includes nanomaterial synthesis, dielectric and optical studies and Photo degradation
      • Corresponding author: kannan@psgitech.ac.in
      • Received Date: 2024-05-18
      • Revised Date: 2024-07-25
      • Available Online: 2024-08-19

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return