Citation: |
Liubin Yang, Xiushuo Gu, Min Zhou, Jianya Zhang, Yonglin Huang, Yukun Zhao. Deep-UV-photo-excited synaptic Ga2O3 nano-device with low-energy consumption for neuromorphic computing[J]. Journal of Semiconductors, 2024, In Press. doi: 10.1088/1674-4926/24050037
****
L B Yang, X S Gu, M Zhou, J Y Zhang, Y L Huang, and Y K Zhao, Deep-UV-photo-excited synaptic Ga2O3 nano-device with low-energy consumption for neuromorphic computing[J]. J. Semicond., 2024, accepted doi: 10.1088/1674-4926/24050037
|
Deep-UV-photo-excited synaptic Ga2O3 nano-device with low-energy consumption for neuromorphic computing
DOI: 10.1088/1674-4926/24050037
More Information
-
Abstract
Synaptic nano-devices have powerful capabilities in logic, memory and learning, making them essential components for constructing brain-like neuromorphic computing systems. Here, we have successfully developed and demonstrated a synaptic nano-device based on Ga2O3 nanowires with low energy consumption. Under 255 nm light stimulation, the biomimetic synaptic nano-device can stimulate various functionalities of biological synapses, including pulse facilitation, peak time-dependent plasticity and memory learning ability. It is found that the artificial synaptic device based on Ga2O3 nanowires can achieve an excellent "learning−forgetting−relearning" functionality. The transition from short-term memory to long-term memory and retention of the memory level after the stepwise learning can attribute to the great relearning functionality of Ga2O3 nanowires. Furthermore, the energy consumption of the synaptic nano-device can be lower than 2.39 × 10‒11 J for a synaptic event. Moreover, our device demonstrates exceptional stability in long-term stimulation and storage. In the application of neural morphological computation, the accuracy of digit recognition exceeds 90% after 12 training sessions, indicating the strong learning capability of the cognitive system composed of this synaptic nano-device. Therefore, our work paves an effective way for advancing hardware-based neural morphological computation and artificial intelligence systems requiring low power consumption. -
References
[1] Lee T J, Kim S K, Seong T Y. Sputtering-deposited amorphous SrVOx-based memristor for use in neuromorphic computing. Sci Rep, 2020, 10, 5761 doi: 10.1038/s41598-020-62642-3[2] Wang J Q, Mao S S, Zhu S H, et al. Biomemristors-based synaptic devices for artificial intelligence applications. Org Electron, 2022, 106, 106540 doi: 10.1016/j.orgel.2022.106540[3] Feng Z Y, Yu J R, Wei Y C, et al. Tribo-ferro-optoelectronic neuromorphic transistor of α-In2Se3. Brain-X, 2023, 1, e24 doi: 10.1002/brx2.24[4] Song L K, Liu P Y, Pei J F, et al. Spiking neurons with neural dynamics implemented using stochastic memristors. Adv Electron Mater, 2024, 10, 2300564 doi: 10.1002/aelm.202300564[5] Tian B B, Xie Z Z, Chen L Q, et al. Ultralow-power in-memory computing based on ferroelectric memcapacitor network. Exploration, 2023, 3, 20220126 doi: 10.1002/EXP.20220126[6] Jiang S, Nie S, He Y, et al. Emerging synaptic devices: From two-terminal memristors to multiterminal neuromorphic transistors. Mater Today Nano, 2019, 8, 100059 doi: 10.1016/j.mtnano.2019.100059[7] Shainline J M, Buckley S M, Mirin R P, et al. Superconducting optoelectronic circuits for neuromorphic computing. Phys Rev Applied, 2017, 7, 034013 doi: 10.1103/PhysRevApplied.7.034013[8] Drachman D A. Do we have brain to spare? Neurology, 2005, 64, 2004 doi: 10.1212/01.WNL.0000166914.38327.BB[9] Monalisha P, Li S Y, Bhat S G, et al. Synaptic behavior of Fe3O4-based artificial synapse by electrolyte gating for neuromorphic computing. J Appl Phys, 2023, 133, 084901 doi: 10.1063/5.0120854[10] Zhang Y C, Liu L, Tu B, et al. An artificial synapse based on molecular junctions. Nat Commun, 2023, 14, 247 doi: 10.1038/s41467-023-35817-5[11] Zhao J S, Zheng S T, Zhou L W, et al. An artificial optoelectronic synapse based on MoOx film. Nanotechnology, 2023, 34, 145201 doi: 10.1088/1361-6528/acb217[12] Kwon J Y, Kim J E, Kim J S, et al. Artificial sensory system based on memristive devices. Exploration, 2024, 4, 20220162 doi: 10.1002/EXP.20220162[13] Zhang S, Xu W T. All-printed ultra-flexible organic nanowire artificial synapses. J Mater Chem C, 2020, 8, 11138 doi: 10.1039/D0TC02172E[14] Hirayama H. Research status and prospects of deep ultraviolet devices. J Semicond, 2019, 40, 120301 doi: 10.1088/1674-4926/40/12/120301[15] He T, Zhang X D, Ding X Y, et al. Broadband ultraviolet photodetector based on vertical Ga2O3/GaN nanowire array with high responsivity. Adv Opt Mater, 2019, 7, 1801653 doi: 10.1002/adom.201801653[16] Yoon Y, Kim Y, Hwang W S, et al. Biological UV photoreceptors-inspired Sn-doped polycrystalline β-Ga2O3 optoelectronic synaptic phototransistor for neuromorphic computing. Adv Electron Mater, 2023, 9, 2300098 doi: 10.1002/aelm.202300098[17] Lin X H, Long H T, Ke S, et al. Indium-gallium-zinc-oxide-based photoelectric neuromorphic transistors for spiking morse coding. Chin Phys Lett, 2022, 39, 068501 doi: 10.1088/0256-307X/39/6/068501[18] Sato K, Hayashi Y, Masaoka N, et al. High-temperature operation of gallium oxide memristors up to 600 K. Sci Rep, 2023, 13, 1261 doi: 10.1038/s41598-023-28075-4[19] Wang S P, He C L, Tang J, et al. Electronic synapses based on ultrathin quasi-two-dimensional gallium oxide memristor. Chin Phys B, 2019, 28, 017304 doi: 10.1088/1674-1056/28/1/017304[20] Zhou R F, Zhang W X, Cong H F, et al. Metal oxide semiconductor nanowires enabled air-stable ultraviolet-driven synaptic transistors for artificial vision. Mat Sci Semicon Proc, 2023, 158, 107344 doi: 10.1016/j.mssp.2023.107344[21] Huang C H, Wu C Y, Lin Y F, et al. Wet-etching-boosted charge storage in 1D nitride-based systems for imitating biological synaptic behaviors. Adv Funct Mater, 2023, 33, 2306030 doi: 10.1002/adfm.202306030[22] Chen X, Chen B K, Jiang B, et al. Nanowires for UV–vis–IR optoelectronic synaptic devices. Adv Funct Mater, 2023, 33, 2208807 doi: 10.1002/adfm.202208807[23] Huang F, Fang F E, Zheng Y, et al. Visible-light stimulated synaptic plasticity in amorphous indium-gallium-zinc oxide enabled by monocrystalline double perovskite for high-performance neuromorphic applications. Nano Res, 2023, 16, 1304 doi: 10.1007/s12274-022-4806-4[24] Li J, Wen S K, Jiang D L, et al. Fully solution-processed InSnO/HfGdOx thin-film transistor for light-stimulated artificial synapse. Flex Print Electron, 2022, 7, 014006 doi: 10.1088/2058-8585/ac4bb2[25] Wang Y Q, Wang W X, Zhang C W, et al. A digital‒analog integrated memristor based on a ZnO NPs/CuO NWs heterostructure for neuromorphic computing. ACS Appl Electron Mater, 2022, 4, 3525 doi: 10.1021/acsaelm.2c00495[26] Guo T, Zhang B Z, Wang X Y, et al. Broadband optoelectronic synapse enables compact monolithic neuromorphic machine vision for information processing. Adv Funct Mater, 2023, 33, 2303879 doi: 10.1002/adfm.202303879[27] Li J X, Dwivedi P, Kumar K S, et al. Growing perovskite quantum dots on carbon nanotubes for neuromorphic optoelectronic computing. Adv Electron Mater, 2021, 7, 2000535 doi: 10.1002/aelm.202000535[28] Liu J S, Li Z J, Jia C H, et al. Artificial synapse based on 1, 4-diphenylbutadiyne with femtojoule energy consumption. Phys Chem Chem Phys, 2023, 25, 5453 doi: 10.1039/D2CP05417E[29] Wang J Y, Wan C J, Wan Q. Dual-gate IGZO-based neuromorphic transistors with stacked Al2O3/chitosan gate dielectrics. J Inorg Mater, 2023, 38, 445 doi: 10.15541/jim20220767[30] Yang Z J, Wang L, Shi W, et al. Back to homogeneous computing: A tightly-coupled neuromorphic processor with neuromorphic ISA. IEEE Trans Parallel Distrib Syst, 2023, 34, 2910 doi: 10.1109/TPDS.2023.3307408[31] Sun B, Guo T, Zhou G D, et al. Synaptic devices based neuromorphic computing applications in artificial intelligence. Mater Today Phys, 2021, 18, 100393 doi: 10.1016/j.mtphys.2021.100393[32] Al-khamis K M, Mahfouz R M, Al-warthan A A, et al. Synthesis and characterization of gallium oxide nanoparticles. Arab J Chem, 2009, 2, 73 doi: 10.1016/j.arabjc.2009.10.001[33] Kang T X, Yang D M, Du F Q, et al. Using magnesium reduction strategy to produce black Ga2O3 with variable oxygen vacancies for photocatalytic applications. J Alloys Compd, 2022, 926, 166887 doi: 10.1016/j.jallcom.2022.166887[34] Wu C, Wu F, Ma C, et al. A general strategy to ultrasensitive Ga2O3 based self-powered solar-blind photodetectors. Mater Today Phys, 2022, 23, 100643 doi: 10.1016/j.mtphys.2022.100643[35] Jiang M, Zhang J Y, Yang W X, et al. Flexible self-powered photoelectrochemical photodetector with ultrahigh detectivity, ultraviolet/visible reject ratio, stability, and a quasi-invisible functionality based on lift-off vertical (Al, Ga)N nanowires. Adv Mater Interfaces, 2022, 9, 2200028 doi: 10.1002/admi.202200028[36] Zhang J Y, Jiao B, Dai J F, et al. Enhance the responsivity and response speed of self-powered ultraviolet photodetector by GaN/CsPbBr3 core-shell nanowire heterojunction and hydrogel. Nano Energy, 2022, 100, 107437 doi: 10.1016/j.nanoen.2022.107437[37] Das U, Sarkar P, Paul B, et al. Halide perovskite two-terminal analog memristor capable of photo-activated synaptic weight modulation for neuromorphic computing. Appl Phys Lett, 2021, 118, 182103 doi: 10.1063/5.0049161[38] Yuan S, Feng Z, Qiu B, et al. Silicon carbide nanowire-based multifunctional and efficient visual synaptic devices for wireless transmission and neural network computing. Sci China Mater, 2023, 66, 3238 doi: 10.1007/s40843-023-2472-0[39] Hofer S B, Mrsic-Flogel T D, Bonhoeffer T, et al. Experience leaves a lasting structural trace in cortical circuits. Nature, 2009, 457, 313 doi: 10.1038/nature07487[40] Yan X B, Wang J J, Zhao M L, et al. Artificial electronic synapse characteristics of a Ta/Ta2O5-x/Al2O3/InGaZnO4 memristor device on flexible stainless steel substrate. Appl Phys Lett, 2018, 113, 013503 doi: 10.1063/1.5027776[41] Zhang S, Yang L, Jiang C P, et al. Digitally aligned ZnO nanowire array based synaptic transistors with intrinsically controlled plasticity for short-term computation and long-term memory. Nanoscale, 2021, 13, 19190 doi: 10.1039/D1NR04156H[42] Liu G, Wang C, Zhang W B, et al. Organic biomimicking memristor for information storage and processing applications. Adv Electron Mater, 2016, 2, 1500298 doi: 10.1002/aelm.201500298[43] Qi H X, Wu Y. Synaptic plasticity of TiO2 nanowire transistor. Microelectron Int, 2020, 37, 125 doi: 10.1108/MI-08-2019-0053[44] Li R Z, Dong Y B, Qian F S, et al. CsPbBr3/graphene nanowall artificial optoelectronic synapses for controllable perceptual learning. PhotoniX, 2023, 4, 4 doi: 10.1186/s43074-023-00082-8[45] He K, Liu Y Q, Yu J C, et al. Artificial neural pathway based on a memristor synapse for optically mediated motion learning. ACS Nano, 2022, 16, 9691 doi: 10.1021/acsnano.2c03100[46] Kim J H, Lee H J, Kim H J, et al. Oxide semiconductor memristor-based optoelectronic synaptic devices with quaternary memory storage. Adv Electron Mater, 2024, 2300863 doi: 10.1002/aelm.202300863[47] Xie P S, Huang Y L, Wang W, et al. Ferroelectric P(VDF-TrFE) wrapped InGaAs nanowires for ultralow-power artificial synapses. Nano Energy, 2022, 91, 106654 doi: 10.1016/j.nanoen.2021.106654 -
Proportional views