Citation: |
Ang Li, Qianli Ma, Yujun Xie, Yongliang Xiong, Yingjie Ma, Han Liu, Ye Jin, Menghan Yang, Guike Li, Haoran Yin, Minye Zhu, Yang Qu, Peng Wang, Daofa Wang, Wei Li, Liyuan Liu, Nan Qi, Ming Li. A 256 Gb/s electronic−photonic monolithically integrated transceiver in 45 nm CMOS[J]. Journal of Semiconductors, 2024, 45(7): 070501. doi: 10.1088/1674-4926/24050040
****
A Li, Q L Ma, Y J Xie, Y L Xiong, Y J Ma, H Liu, Y Jin, M H Yang, G K Li, H R Yin, M Y Zhu, Y Qu, P Wang, D F Wang, W Li, L Y Liu, N Qi, and M Li, A 256 Gb/s electronic−photonic monolithically integrated transceiver in 45 nm CMOS[J]. J. Semicond., 2024, 45(7), 070501 doi: 10.1088/1674-4926/24050040
|
A 256 Gb/s electronic−photonic monolithically integrated transceiver in 45 nm CMOS
DOI: 10.1088/1674-4926/24050040
More Information
-
References
[1] Plant D V, Morsy-Osman M, Chagnon M. Optical communication systems for datacenter networks. 2017 Optical Fiber Communications Conference and Exhibition (OFC), 2017, 1[2] Atabaki A H, Moazeni S, Pavanello F, et al. Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip. Nature, 2018, 556(7701), 349 doi: 10.1038/s41586-018-0028-z[3] Gonzalez J, Palma M G, Hattink M, et al. Optically connected memory for disaggregated data centers. Journal of Parallel and Distributed Computing, 2022, 163, 300 doi: 10.1016/j.jpdc.2022.01.013[4] Minkenberg C, Krishnaswamy R, Zilkie A, et al. Co-packaged datacenter optics: Opportunities and challenges. IET Optoelectronics, 2021, 15(2), 77 doi: 10.1049/ote2.12020[5] Meade R, Ardalan S, Davenport M, et al. TeraPHY: a high-density electronic-photonic chiplet for optical I/O from a multi-chip module. 2019 Optical Fiber Communications Conference and Exhibition (OFC), 2019, 1[6] Hirokawa T, Bian Y, Giewont K, et al. Latest progress and challenges in 300 mm monolithic silicon photonics manufacturing. Optical Fiber Communication Conference. Optica Publishing Group, 2024, Th3H. 2[7] Sun C, Wade M, Georgas M, et al. A 45 nm CMOS-SOI monolithic photonics platform with bit-statistics-based resonant microring thermal tuning. IEEE Journal of Solid-State Circuits, 2016, 51(4), 893 doi: 10.1109/JSSC.2016.2519390[8] Ma Q, Li A, Xiong Y, et al. A 200Gb/s, 3.5pJ/bit monolithically integrated WDM Si-Photonic transceiver for chiplet optical I/O. 2024 IEEE Asian Solid-State Circuits Conference(ASSCC) (submitted[9] Levy C S, Xuan Z, Sharma J, et al. 8-λ×50 Gbps/λ heterogeneously-integrated Si-Ph DWDM transmitter. IEEE Journal of Solid-State Circuits, 2024, 59, 690[10] Xuan Z, Balamurugan G, Huang D N, et al. A 256 Gbps heterogeneously integrated silicon photonic microring-based DWDM receiver suitable for in-package optical I/O. 2023 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits), 2023, 1 doi: 10.23919/VLSITechnologyandCir57934.2023.10185280[11] Raj M, Xie C, Bekele A, et al. A 0.96pJ/b 7× 50Gb/s-per-fiber WDM receiver with stacked 7nm CMOS and 45nm silicon photonic dies. 2023 IEEE International Solid-State Circuits Conference (ISSCC), 2023, 11 doi: 10.1109/ISSCC42615.2023.10067617[12] Sun C. Photonics for die-to-die interconnects: Links and optical I/O chiplets. 2024 IEEE International Solid-State Circuits Conference (ISSCC), F1.7[13] Moralis-Pegios M, Pitris S, Alexoudi T, et al. 4-channel 200 Gb/s WDM O-band silicon photonic transceiver sub-assembly. Optics Express, 2020, 28(4), 5706 doi: 10.1364/OE.373454 -
Proportional views