Citation: |
Lingchen Liu, Ying Yuan, Hao Xu, Xiaokun Qin, Xiaofeng Wang, Zheng Lou, Lili Wang. Pressure sensor with wide detection range and high sensitivity for wearable human health monitoring[J]. Journal of Semiconductors, 2025, 46(4): 042401. doi: 10.1088/1674-4926/24110017
****
L C Liu, Y Yuan, H Xu, X K Qin, X F Wang, Z Lou, and L L Wang, Pressure sensor with wide detection range and high sensitivity for wearable human health monitoring[J]. J. Semicond., 2025, 46(4), 042401 doi: 10.1088/1674-4926/24110017
|
Pressure sensor with wide detection range and high sensitivity for wearable human health monitoring
DOI: 10.1088/1674-4926/24110017
CSTR: 32376.14.1674-4926.24110017
More Information-
Abstract
High-performance flexible pressure sensors have garnered significant attention in fields such as wearable electronics and human-machine interfaces. However, the development of flexible pressure sensors that simultaneously achieve high sensitivity, a wide detection range, and good mechanical stability remains a challenge. In this paper, we propose a flexible piezoresistive pressure sensor based on a Ti3C₂Tx (MXene)/polyethylene oxide (PEO) composite nanofiber membrane (CNM). The sensor, utilizing MXene (0.4 wt%)/PEO (5 wt%), exhibits high sensitivity (44.34 kPa−1 at 0−50 kPa, 12.99 kPa−1 at 50−500 kPa) and can reliably monitor physiological signals and other subtle cues. Moreover, the sensor features a wide detection range (0−500 kPa), fast response and recovery time (~150/45 ms), and excellent mechanical stability (over 10 000 pressure cycles at maximum load). Through an MXene/PEO sensor array, we demonstrate its applications in human physiological signal monitoring, providing a reliable way to expand the application of MXene-based flexible pressure sensors. -
References
[1] Li L L, Xu H, Li Z X, et al. 3D heterogeneous sensing system for multimode parrallel signal no-spatiotemporal misalignment recognition. Adv Mater, 2025, 37, 2414054 doi: 10.1002/adma.202414054[2] Qin X K, Zhong B W, Lv S X, et al. A zero-voltage-writing artificial nervous system based on biosensor integrated on ferroelectric tunnel junction. Adv Mater, 2024, 36, e2404026 doi: 10.1002/adma.202404026[3] Lei D D, Liu N S, Su T Y, et al. Roles of MXene in pressure sensing: Preparation, composite structure design, and mechanism. Adv Mater, 2022, 34, e2110608 doi: 10.1002/adma.202110608[4] Zhong B W, Qin X K, Xu H, et al. Interindividual- and blood-correlated sweat phenylalanine multimodal analytical biochips for tracking exercise metabolism. Nat Commun, 2024, 15, 624 doi: 10.1038/s41467-024-44751-z[5] Guan R Q, Xu H, Lou Z, et al. Metamaterials for high-performance smart sensors. Appl Phys Rev, 2024, 11, 041327 doi: 10.1063/5.0232606[6] Luo J B, Sun C Y, Chang B Y, et al. MXene-enabled self-adaptive hydrogel interface for active electroencephalogram interactions. ACS Nano, 2022, 16, 19373 doi: 10.1021/acsnano.2c08961[7] Jian M Q, Xia K L, Wang Q, et al. Flexible and highly sensitive pressure sensors based on bionic hierarchical structures. Adv Funct Mater, 2017, 27, 1606066 doi: 10.1002/adfm.201606066[8] Wei C H, Cheng R W, Ning C, et al. A self-powered body motion sensing network integrated with multiple triboelectric fabrics for biometric gait recognition and auxiliary rehabilitation training. Adv Funct Mater, 2023, 33, 2303562 doi: 10.1002/adfm.202303562[9] Ning C, Cheng R W, Jiang Y, et al. Helical fiber strain sensors based on triboelectric nanogenerators for self-powered human respiratory monitoring. ACS Nano, 2022, 16, 2811 doi: 10.1021/acsnano.1c09792[10] Sun C Y, Luo J B, Jia T X, et al. Water-resistant and underwater adhesive ion-conducting gel for motion-robust bioelectric monitoring. Chem Eng J, 2022, 431, 134012 doi: 10.1016/j.cej.2021.134012[11] Ren M N, Sun Z S, Zhang M Q, et al. A high-performance wearable pressure sensor based on an MXene/PVP composite nanofiber membrane for health monitoring. Nanoscale Adv, 2022, 4, 3987 doi: 10.1039/D2NA00339B[12] Ma Y N, Liu N S, Li L Y, et al. A highly flexible and sensitive piezoresistive sensor based on MXene with greatly changed interlayer distances. Nat Commun, 2017, 8, 1207 doi: 10.1038/s41467-017-01136-9[13] Su Z M, Chen H T, Song Y, et al. Microsphere-assisted robust epidermal strain gauge for static and dynamic gesture recognition. Small, 2017, 13, 1702108 doi: 10.1002/smll.201702108[14] Sadiq H, Hui H, Huang S, et al. A flexible pressure sensor based on PDMS-CNTs film for multiple applications. IEEE Sens J, 2022, 22, 3033 doi: 10.1109/JSEN.2021.3114379[15] Mo F N, Huang Y, Li Q, et al. A highly stable and durable capacitive strain sensor based on dynamically super-tough hydro/organo-gels. Adv Funct Mater, 2021, 31, 2010830 doi: 10.1002/adfm.202010830[16] Cho S H, Lee S W, Yu S, et al. Micropatterned pyramidal ionic gels for sensing broad-range pressures with high sensitivity. ACS Appl Mater Interfaces, 2017, 9, 10128 doi: 10.1021/acsami.7b00398[17] Qiu H J, Fang G, Wen Y R, et al. Nanoporous high-entropy alloys for highly stable and efficient catalysts. J Mater Chem A, 2019, 7, 6499 doi: 10.1039/C9TA00505F[18] Li Z X, Xu H, Zheng Y Q, et al. A reconfigurable heterostructure transistor array for monocular 3D parallax reconstructuion. Nat Electron, 2025, 8, 46 doi: 10.1038/s41928-024-01261-6[19] Yang D, Guo H Y, Chen X Y, et al. A flexible and wide pressure range triboelectric sensor array for real-time pressure detection and distribution mapping. J Mater Chem A, 2020, 8, 23827 doi: 10.1039/D0TA08223F[20] Guzelturk B, Erdem O, Olutas M, et al. Stacking in colloidal nanoplatelets: Tuning excitonic properties. ACS Nano, 2014, 8, 12524 doi: 10.1021/nn5053734[21] Dong K, Peng X, An J, et al. Shape adaptable and highly resilient 3D braided triboelectric nanogenerators as e-textiles for power and sensing. Nat Commun, 2020, 11, 2868 doi: 10.1038/s41467-020-16642-6[22] Yang W F, Gong W, Hou C Y, et al. All-fiber tribo-ferroelectric synergistic electronics with high thermal-moisture stability and comfortability. Nat Commun, 2019, 10, 5541 doi: 10.1038/s41467-019-13569-5[23] Zhao Y J, Liu J Z, Horn M, et al. Recent advancements in metal organic framework based electrodes for supercapacitors. Sci China Mater, 2018, 61, 159 doi: 10.1007/s40843-017-9153-x[24] VahidMohammadi A, Rosen J, Gogotsi Y. The world of two-dimensional carbides and nitrides (MXenes). Science, 2021, 372, eabf1581 doi: 10.1126/science.abf1581[25] Ghidiu M, Lukatskaya M R, Zhao M Q, et al. Conductive two-dimensional titanium carbide 'clay' with high volumetric capacitance. Nature, 2014, 516, 78 doi: 10.1038/nature13970[26] Mao M, Yu K X, Cao C F, et al. Facile and green fabrication of flame-retardant Ti3C2Tx MXene networks for ultrafast, reusable and weather-resistant fire warning. Chem Eng J, 2022, 427, 131615 doi: 10.1016/j.cej.2021.131615[27] Xu J X, Peng T, Qin X, et al. Recent advances in 2D MXenes: Preparation, intercalation and applications in flexible devices. J Mater Chem A, 2021, 9, 14147 doi: 10.1039/D1TA03070A[28] Ho D H, Choi Y Y, Jo S B, et al. Sensing with MXenes: Progress and prospects. Adv Mater, 2021, 33, 2005846 doi: 10.1002/adma.202005846[29] Pei Y Y, Zhang X L, Hui Z Y, et al. Ti3C2TX MXene for sensing applications: Recent progress, design principles, and future perspectives. ACS Nano, 2021, 15, 3996 doi: 10.1021/acsnano.1c00248[30] Qin R Z, Nong J, Wang K Q, et al. Recent advances in flexible pressure sensors based on MXene materials. Adv Mater, 2024, 36, 2312761 doi: 10.1002/adma.202312761[31] Song Y, Min J H, Gao W. Wearable and implantable electronics: Moving toward precision therapy. ACS Nano, 2019, 13, 12280 doi: 10.1021/acsnano.9b08323[32] Liu S H, Liu L J, Pan K L, et al. Using the characteristics of pulse waveform to enhance the accuracy of blood pressure measurement by a multi-dimension regression model. Appl Sci, 2019, 9, 2922 doi: 10.3390/app9142922[33] Gurovich A N, Braith R W. Pulse wave analysis and pulse wave velocity techniques: Are they ready for the clinic? Hypertens Res, 2011, 34, 166 doi: 10.1038/hr.2010.217[34] McGill H C Jr, McMahan C A, Gidding S S. Preventing heart disease in the 21st century: Implications of the pathobiological determinants of atherosclerosis in youth (PDAY) study. Circulation, 2008, 117, 1216 doi: 10.1161/CIRCULATIONAHA.107.717033[35] Liu W J, Liu N S, Yue Y, et al. Piezoresistive pressure sensor based on synergistical innerconnect polyvinyl alcohol nanowires/wrinkled graphene film. Small, 2018, 14, 1704149 doi: 10.1002/smll.201704149[36] Zhang W G, Xiao Y, Duan Y, et al. A high-performance flexible pressure sensor realized by overhanging cobweb-like structure on a micropost array. ACS Appl Mater Interfaces, 2020, 12, 48938 doi: 10.1021/acsami.0c12369[37] Guo Y, Zhong M J, Fang Z W, et al. A wearable transient pressure sensor made with MXene nanosheets for sensitive broad-range human–machine interfacing. Nano Lett, 2019, 19, 1143 doi: 10.1021/acs.nanolett.8b04514[38] Du H T, Zhou H W, Wang M C, et al. Electrospun elastic films containing AgNW-bridged MXene networks as capacitive electronic skins. ACS Appl Mater Interfaces, 2022, 14, 31225 doi: 10.1021/acsami.2c04593[39] Shen X Q, Li M D, Ma J P, et al. Skin-inspired pressure sensor with MXene/P(VDF-TrFE-CFE) as active layer for wearable electronics. Nanomaterials, 2021, 11, 716 doi: 10.3390/nano11030716[40] Qin R Z, Hu M J, Li X, et al. A new strategy for the fabrication of a flexible and highly sensitive capacitive pressure sensor. Microsyst Nanoeng, 2021, 7, 100 doi: 10.1038/s41378-021-00327-1[41] Liu Z H, Liang T L, Xin Y, et al. Natural bamboo leaves as dielectric layers for flexible capacitive pressure sensors with adjustable sensitivity and a broad detection range. RSC Adv, 2021, 11, 17291 doi: 10.1039/D1RA03207K[42] He X, He X, He H L, et al. Large-scale, cuttable, full tissue-based capacitive pressure sensor for the detection of human physiological signals and pressure distribution. ACS Omega, 2021, 6, 27208 doi: 10.1021/acsomega.1c03900[43] Chen W F, Yan X. Progress in achieving high-performance piezoresistive and capacitive flexible pressure sensors: A review. J Mater Sci Technol, 2020, 43, 175 doi: 10.1016/j.jmst.2019.11.010[44] Qin R Z, Li X, Hu M J, et al. Preparation of high-performance MXene/PVA-based flexible pressure sensors with adjustable sensitivity and sensing range. Sens Actuat A Phys, 2022, 338, 113458 doi: 10.1016/j.sna.2022.113458[45] Pan L M, Han L Y, Liu H X, et al. Flexible sensor based on hair-like microstructured ionic hydrogel with high sensitivity for pulse wave detection. SSRN Journal, 2022, 450[46] Wu W T, Li L L, Li Z X, et al. Extensible integrated system for real-time monitoring of cardiovascular physiological signals and limb health. Adv Mater, 2023, 35, 2304596 doi: 10.1002/adma.202304596 -
Proportional views