Citation: |
Matilde Siviero, Maxime Hugues, Lucas Lesourd, Eric Frayssinet, Shirley Prado de la Cruz, Sebastien Chenot, Johan-Petter Hofverberg, Marie Vidal, Jean-Yves Duboz. GaN diodes comparative study for high energy protons detection[J]. Journal of Semiconductors, 2025, In Press. doi: 10.1088/1674-4926/25020014
****
M Siviero, M Hugues, L Lesourd, E Frayssinet, S P D L Cruz, S Chenot, J P Hofverberg, M Vidal, and J Y Duboz, GaN diodes comparative study for high energy protons detection[J]. J. Semicond., 2025, accepted doi: 10.1088/1674-4926/25020014
|
GaN diodes comparative study for high energy protons detection
DOI: 10.1088/1674-4926/25020014
CSTR: 32376.14.1674-4926.25020014
More Information-
Abstract
GaN diodes for high energy (64.8 MeV) proton detection were fabricated and investigated. A comparison of the performance of GaN diodes with different structures is presented, with a focus on sapphire and on GaN substrates, Schottky and pin diodes, and different active layer thicknesses. Pin diodes fabricated on a sapphire substrate are the best choice for a GaN proton detector working at 0 V bias. They are sensitive (minimum detectable proton beam <1 pA/cm2), linear as a function of proton current and fast (<1 s). High proton current sensitivity and high spatial resolution of GaN diodes can be exploited in the future for proton imaging of patients in proton therapy.-
Keywords:
- gallium nitride,
- diodes,
- proton irradiation,
- proton detectors
-
References
[1] Wilson R R. Radiological use of fast protons. Radiology, 1946, 47(5), 487 doi: 10.1148/47.5.487[2] Mohan R. A review of proton therapy - Current status and future directions. Precis. Radiat. Oncol, 2022, 6(2), 164[3] Cirrone G A P, Cuttone G, Lojacono et al. A 62-MeV proton beam for the treatment of ocular melanoma at Laboratori Nazionali del Sud-INFN. IEEE Trans Nucl Sci, 2004, 51(3), 860-5 doi: 10.1109/TNS.2004.829535[4] Arjomandy B, Sahoo N, Ding X N, et al. Use of a two‐dimensional ionization chamber array for proton therapy beam quality assurance. Med. Phys, 2008, 35(9), 3889[5] Taylor J T, Waltham C, Price T, et al. A new silicon tracker for proton imaging and dosimetry. Nucl. Instrum. Methods Phys Res Sect Accel Spectrometers Detect Assoc Equip, 2016, 831, 362 doi: 10.1016/j.nima.2016.02.013[6] Esposito M, Waltham C, Taylor J T, et al. PRaVDA: The first solid-state system for proton computed tomography. Phys Med, 2018, 55, 149 doi: 10.1016/j.ejmp.2018.10.020[7] Russo S, Mirandola A, Molinelli S, et al. Characterization of a commercial scintillation detector for 2-D dosimetry in scanned proton and carbon ion beams. Phys Med, 2017, 34, 48-54 doi: 10.1016/j.ejmp.2017.01.011[8] De Napoli M. SiC detectors: A review on the use of silicon carbide as radiation detection material. Front. Phys, 2022, 10, 898833[9] Milluzzo G, De Napoli M, Di Martino F, et al. Comprehensive dosimetric characterization of novel silicon carbide detectors with UHDR electron beams for FLASH radiotherapy. Med Phys, 2024, 51, 6390 doi: 10.1002/mp.17172[10] Wyrsch N, Antognini L, Ballif C, et al. Amorphous silicon detectors for proton beam monitoring in FLASH radiotherapy. Radiat Meas, 2024, 177, 107230 doi: 10.1016/j.radmeas.2024.107230[11] Daniel S. Levin, Peter S. Friedman, Claudio Ferretti, et al. A prototype scintillator real-time beam monitor for ultra-high dose rate radiotherapy. Medycal Phys, 2024, 2905-23[12] Floriduz A and Devine J D. Modelling of proton irradiated GaN-based high-power white light-emitting diodes. Jpn J Appl Phys, 2018, 57, 080304 doi: 10.7567/JJAP.57.080304[13] Harper R S, Buttar C M, Allport P P, et al. Evolution of silicon microstrip detector currents during proton irradiation at the CERN PS. Nucl Instrum Methods Phys Res Sect Accel Spectrometers Detect Assoc Equip, 2002, 479(2/3), 548[14] Pearton S J, Deist R, Ren F, et al. Review of radiation damage in GaN-based materials and devices. J Vac Sci Technol Vac Surf Films, 2013, 31, 050801 doi: 10.1116/1.4799504[15] Logan J V, Woller K B, Webster P T, et al. Open volume defect accumulation with irradiation in GaN, GaP, InAs, InP, Si, ZnO, and MgO. J Appl Phys, 2023, 134, 225701 doi: 10.1063/5.0147324[16] Alaie Z, Mohammad Nejad S and Yousefi M H. Recent advances in ultraviolet photodetectors. Mater Sci Semicond Process, 2015, 29, 16-55 doi: 10.1016/j.mssp.2014.02.054[17] Sandupatla A, Arulkumaran S, Ranjan K, et al. Low Voltage High-Energy α-Particle Detectors by GaN-on-GaN Schottky Diodes with Record-High Charge Collection Efficiency. Sensors, 2019, 19, 5107 doi: 10.3390/s19235107[18] Zhou C, Melton A G, Burgett E, et al. Neutron detection performance of gallium nitride based semiconductors. Sci Rep, 2019, 9, 17551 doi: 10.1038/s41598-019-53664-7[19] Duboz J-Y, Zucchi J, Frayssinet E, et al. GaN Schottky diodes for proton beam monitoring. Biomed Phys Eng Express, 2019, 5, 025015 doi: 10.1088/2057-1976/aaf9b4[20] Arjomandy B, Taylor P, Ainsley C, et al. AAPM task group 224: Comprehensive proton therapy machine quality assurance. Med Phys, 2019, 46[21] William Steward V and Koehler A M. Proton Radiography in the Diagnosis of Breast Carcinoma. Radiology, 1974, 110, 217 doi: 10.1148/110.1.217[22] Poludniowski G, Allinson N M and Evans P M. Proton radiography and tomography with application to proton therapy. Br J Radiol, 2015, 88, 20150134 doi: 10.1259/bjr.20150134[23] Lane S A, Slater J M and Yang G Y. Image-Guided Proton Therapy: A Comprehensive Review. Cancers, 2023, 15, 2555 doi: 10.3390/cancers15092555[24] Uwe Schneider and Eros Pedroni. Proton radiography as a tool for quality control in proton therapy. Med Phys, 1995, 22, 353-363 doi: 10.1118/1.597470[25] Duboz J-Y, Zucchi J, Frayssinet E, et al. Proton Energy Loss in GaN. Phys Status Solidi B, 2021, 258, 2100167 doi: 10.1002/pssb.202100167[26] Gian W, Skowronski M and Rohrer G S. Structural Defects and Their Relationship to Nucleation of Gan Thin Films. MRS Proc, 1996, 423(1), 475[27] Roder C, Einfeldt S, Figge S, et al. Stress and wafer bending of a-plane GaN layers on r-plane sapphire substrates. J Appl Phys, 2006, 100(10), 103511 doi: 10.1063/1.2386940 -
Supplements
25020014Supplementary_Material.pdf
-
Proportional views