Processing math: 100%
J. Semicond. > 2013, Volume 34 > Issue 1 > 013002

SEMICONDUCTOR MATERIALS

First-principles calculation on the concentration of intrinsic defects in 4H-SiC

Ping Cheng1, , Yuming Zhang2 and Yimen Zhang2

+ Author Affiliations

 Corresponding author: Cheng Ping, Email:chpzmm@yahoo.com.cn

DOI: 10.1088/1674-4926/34/1/013002

PDF

Abstract: Based on the first-principles pseudopotentials and the plane wave energy band method, the supercells of perfect crystal 4H-SiC and those with intrinsic defects VC, VSi, VC-C and VC-Si were calculated. Ignoring the atomic relaxations, the results show that the formation energy of intrinsic defects is ranked, from low to high, as VC, VC-C, VSi to VSi-Si at 0 K. The equilibrium concentration of each intrinsic defect can be deduced from the formation energy of each intrinsic defect. The concentration ranks, from high to low, as VC, VC-C, VSi, VSi-Si, which is in accordance with the ESR and PL results. The stabilizing process of metastable defects VSi converting to VC-C was explained by formation energy.

Key words: first-principlesintrinsic defectsformation energy



[1]
Poblenz C, Corrion A L, Recht F, et al. Power performance of AlGaN/GaN HEMTs grown on SiC by ammonia-MBE at 4 and 10 GHz. IEEE Electron Device Lett, 2007, 28(11):945 doi: 10.1109/LED.2007.907266
[2]
Zvanut M E, Konovalov V V. The level position of a deep intrinsic defect in 4H-SiC studied by photoinduced electron paramagnetic resonance. Appl Phys Lett, 2002, 80(3):410 doi: 10.1063/1.1432444
[3]
Carlos W E, Glaser E R, Shanabrook B V, et al. The role of the carbon vacancy——carbon antisite defect in semi-insulating 4H silicon carbide. Bull Am Phys Soc, 2003, 48:1322
[4]
Carlos W E, Glaser E R, Shanabrook B V. Optical and magnetic resonance signatures of deep levels in semi-insulating 4H SiC. Physica B, 2003, 340-342:151 doi: 10.1016/j.physb.2003.09.048
[5]
Son N T, Magnusson B, Zolnai Z, et al. Defects in high-purity semi-insulating SiC. Mater Sci Forum, 2004, 457-460:437 doi: 10.4028/www.scientific.net/MSF.457-460
[6]
Cheng P, Zhang Y M, Zhang Y M. Characteristics of the intrinsic defects in unintentionally doped 4H-SiC after thermal annealing. Microelectron Reliab, 2011, 51(3):572 doi: 10.1016/j.microrel.2010.09.003
[7]
Wen B, Zhao J J, Bucknum M J, et al. First-principles studies of diamond polytypes. Diamond & Related Materials, 2008, 17(3):356
[8]
Rurali R, Hernández E, Godignon P, et al. First principles studies of neutral vacancies diffusion in SiC. Computational Materials Science, 2003, 27(1/2):36
[9]
Velichko O. Simulation of the diffusion of point defects in structures with local elastic. Applied Mathematical Modelling, 2011, 35(3):1134 doi: 10.1016/j.apm.2010.08.002
[10]
Michel B, Adam G, Alexander M, et al. Identification of intrinsic defects in SiC:towards an understanding of defect aggregates by combining theoretical and experimental approaches. Phys Status Solidi B, 2008, 245(7):1281 doi: 10.1002/pssb.v245:7
[11]
Petrenko T T, Petrenko T L, Bratus V Y, et al. Symmetry, spin state and hyperfine parameters of vacancies in cubic SiC. Appl Surf Sci, 2001, 184(1-4):273 doi: 10.1016/S0169-4332(01)00677-8
[12]
He X J, He T, Wang Z H, et al. Neutral vacancy-defect-induced magnetism in SiC monolayer. Physica E:Low-Dimensional Systems and Nanostructures, 2010, 42(9):2451 doi: 10.1016/j.physe.2010.06.010
[13]
Wu P, Yoganathan M, Zwieback I. Defect evolution during growth of SiC crystals. J Cryst Growth, 2008, 310(7-9):1804 doi: 10.1016/j.jcrysgro.2007.11.078
[14]
Gao F, Weber W J, Xiao H Y, et al. Formation and properties of defects and small vacancy clusters in SiC:ab initio calculations. Nuclear Instruments and Methods in Physics Research B, 2009, 267(18):2995 doi: 10.1016/j.nimb.2009.06.018
[15]
Konopka A, Greulich-Weber S, Dierolf V, et al. Microscopic structure and energy transfer of vacancy-related defect pairs with Erbium in wide-gap semiconductors. Opt Mater, 2011, 33:1041 doi: 10.1016/j.optmat.2010.12.005
[16]
Yang F H, Tan J, Zhou C G, et al. Ab initio studies of CiCs and CiOi defects in Si1-xGex alloys. Acta Phys Sin, 2008, 57(2):1109
[17]
Cheng P, Zhang Y M, Zhang Y M, et al. ESR characters of intrinsic defects in epitaxial semi-insulating 4H-SiC illuminated by Xe light. Journal of Semiconductors. 2009, 30(12) 123002 doi: 10.1088/1674-4926/30/12/123002
[18]
Chen J Q, Chen M X, Zhao J S. Defects in crystal. Hangzhou:Zhejiang University Press, 1992
Fig. 1.  Supercell of 4H-SiC and native defects: (a) a perfect crystal of 4H-SiC, (b) one VC on the hexagonal lattice of 4H-SiC, (c) one VSi on the hexagonal lattice of 4H-SiC, (d) the 4H-SiC supercell with one VC–C, (e) the 4H-SiC supercell with one VSi–Si.

Fig. 2.  ESR spectrum in the as-grown sample.

Fig. 3.  PL spectrum of the as-grown sample.

Table 1.   Forming energy of common intrinsic defects in 4H-SiC at 0 K.

[1]
Poblenz C, Corrion A L, Recht F, et al. Power performance of AlGaN/GaN HEMTs grown on SiC by ammonia-MBE at 4 and 10 GHz. IEEE Electron Device Lett, 2007, 28(11):945 doi: 10.1109/LED.2007.907266
[2]
Zvanut M E, Konovalov V V. The level position of a deep intrinsic defect in 4H-SiC studied by photoinduced electron paramagnetic resonance. Appl Phys Lett, 2002, 80(3):410 doi: 10.1063/1.1432444
[3]
Carlos W E, Glaser E R, Shanabrook B V, et al. The role of the carbon vacancy——carbon antisite defect in semi-insulating 4H silicon carbide. Bull Am Phys Soc, 2003, 48:1322
[4]
Carlos W E, Glaser E R, Shanabrook B V. Optical and magnetic resonance signatures of deep levels in semi-insulating 4H SiC. Physica B, 2003, 340-342:151 doi: 10.1016/j.physb.2003.09.048
[5]
Son N T, Magnusson B, Zolnai Z, et al. Defects in high-purity semi-insulating SiC. Mater Sci Forum, 2004, 457-460:437 doi: 10.4028/www.scientific.net/MSF.457-460
[6]
Cheng P, Zhang Y M, Zhang Y M. Characteristics of the intrinsic defects in unintentionally doped 4H-SiC after thermal annealing. Microelectron Reliab, 2011, 51(3):572 doi: 10.1016/j.microrel.2010.09.003
[7]
Wen B, Zhao J J, Bucknum M J, et al. First-principles studies of diamond polytypes. Diamond & Related Materials, 2008, 17(3):356
[8]
Rurali R, Hernández E, Godignon P, et al. First principles studies of neutral vacancies diffusion in SiC. Computational Materials Science, 2003, 27(1/2):36
[9]
Velichko O. Simulation of the diffusion of point defects in structures with local elastic. Applied Mathematical Modelling, 2011, 35(3):1134 doi: 10.1016/j.apm.2010.08.002
[10]
Michel B, Adam G, Alexander M, et al. Identification of intrinsic defects in SiC:towards an understanding of defect aggregates by combining theoretical and experimental approaches. Phys Status Solidi B, 2008, 245(7):1281 doi: 10.1002/pssb.v245:7
[11]
Petrenko T T, Petrenko T L, Bratus V Y, et al. Symmetry, spin state and hyperfine parameters of vacancies in cubic SiC. Appl Surf Sci, 2001, 184(1-4):273 doi: 10.1016/S0169-4332(01)00677-8
[12]
He X J, He T, Wang Z H, et al. Neutral vacancy-defect-induced magnetism in SiC monolayer. Physica E:Low-Dimensional Systems and Nanostructures, 2010, 42(9):2451 doi: 10.1016/j.physe.2010.06.010
[13]
Wu P, Yoganathan M, Zwieback I. Defect evolution during growth of SiC crystals. J Cryst Growth, 2008, 310(7-9):1804 doi: 10.1016/j.jcrysgro.2007.11.078
[14]
Gao F, Weber W J, Xiao H Y, et al. Formation and properties of defects and small vacancy clusters in SiC:ab initio calculations. Nuclear Instruments and Methods in Physics Research B, 2009, 267(18):2995 doi: 10.1016/j.nimb.2009.06.018
[15]
Konopka A, Greulich-Weber S, Dierolf V, et al. Microscopic structure and energy transfer of vacancy-related defect pairs with Erbium in wide-gap semiconductors. Opt Mater, 2011, 33:1041 doi: 10.1016/j.optmat.2010.12.005
[16]
Yang F H, Tan J, Zhou C G, et al. Ab initio studies of CiCs and CiOi defects in Si1-xGex alloys. Acta Phys Sin, 2008, 57(2):1109
[17]
Cheng P, Zhang Y M, Zhang Y M, et al. ESR characters of intrinsic defects in epitaxial semi-insulating 4H-SiC illuminated by Xe light. Journal of Semiconductors. 2009, 30(12) 123002 doi: 10.1088/1674-4926/30/12/123002
[18]
Chen J Q, Chen M X, Zhao J S. Defects in crystal. Hangzhou:Zhejiang University Press, 1992
1

Effect of warpage on the electronic structure and optical properties of bilayer germanene

Qihang Xiong, Weifu Cen, Xingtong Wu, Cong Chen

Journal of Semiconductors, 2022, 43(12): 122102. doi: 10.1088/1674-4926/43/12/122102

2

Defect levels in d-electron containing systems: Comparative study of CdTe using LDA and LDA + U

Yuan Yin, Yu Wang, Guangde Chen, Yelong Wu

Journal of Semiconductors, 2020, 41(10): 102701. doi: 10.1088/1674-4926/41/10/102701

3

The electronic and magnetic properties of wurtzite Mn:CdS, Cr:CdS and Mn:Cr:CdS: first principles calculations

Azeem Nabi, Zarmeena Akhtar, Tahir Iqbal, Atif Ali, Arshad Javid, et al.

Journal of Semiconductors, 2017, 38(7): 073001. doi: 10.1088/1674-4926/38/7/073001

4

First-principles calculations of Mg2X (X = Si, Ge, Sn) semiconductors with the calcium fluorite structure

Sandong Guo

Journal of Semiconductors, 2015, 36(5): 053002. doi: 10.1088/1674-4926/36/5/053002

5

Effects of defects on the electronic properties of WTe2 armchair nanoribbons

Bahniman Ghosh, Abhishek Gupta, Bhupesh Bishnoi

Journal of Semiconductors, 2014, 35(11): 113002. doi: 10.1088/1674-4926/35/11/113002

6

First-principles study on the synergistic effects of codoped anatase TiO2 photocatalysts codoped with N/V or C/Cr

Wenhui Xu, Xinguo Ma, Tong Wu, Zhiqi He, Huihu Wang, et al.

Journal of Semiconductors, 2014, 35(10): 102002. doi: 10.1088/1674-4926/35/10/102002

7

A 10 MHz ripple-based on-time controlled buck converter with dual ripple compensation

Danzhu Lü, Jiale Yu, Zhiliang Hong

Journal of Semiconductors, 2013, 34(2): 025005. doi: 10.1088/1674-4926/34/2/025005

8

Power-aware transceiver design for half-duplex bidirectional chip-to-chip optical interconnects

Jamshid Sangirov, Ikechi Augustine Ukaegbu, Gulomjon Sangirov, Tae-Woo Lee, Hyo-Hoon Park, et al.

Journal of Semiconductors, 2013, 34(12): 125001. doi: 10.1088/1674-4926/34/12/125001

9

First-principle study on the electronic and optical properties of the anatase TiO2 (101) surface

Ying Yang, Qing Feng, Weihua Wang, Yin Wang

Journal of Semiconductors, 2013, 34(7): 073004. doi: 10.1088/1674-4926/34/7/073004

10

Stacking fault energy in some single crystals

Aditya M.Vora

Journal of Semiconductors, 2012, 33(6): 062001. doi: 10.1088/1674-4926/33/6/062001

11

First-principles study of the electronic structures and optical properties of C–F–Be doped wurtzite ZnO

Zuo Chunying, Wen Jing, Zhong Cheng

Journal of Semiconductors, 2012, 33(7): 072001. doi: 10.1088/1674-4926/33/7/072001

12

Approximate Graphic Method for Solving Fermi Level and Majority Carrier Density of Semiconductors with Multiple Donors and Multiple Acceptors

Ken K. Chin

Journal of Semiconductors, 2011, 32(6): 062001. doi: 10.1088/1674-4926/32/6/062001

13

Local charge neutrality condition, Fermi level and majority carrier density of a semiconductor with multiple localized multi-level intrinsic/impurity defects

Ken K. Chin

Journal of Semiconductors, 2011, 32(11): 112001. doi: 10.1088/1674-4926/32/11/112001

14

Mathematical modeling of nanoscale MOS capacitance in the presence of depletion and energy quantization in a poly-silicon gate

Amit Chaudhry, J. N. Roy

Journal of Semiconductors, 2010, 31(11): 114001. doi: 10.1088/1674-4926/31/11/114001

15

First-principles of wurtzite ZnO (0001) and (000ī) surface structures

Zhang Yufei, Guo Zhiyou, Gao Xiaoqi, Cao Dongxing, Dai Yunxiao, et al.

Journal of Semiconductors, 2010, 31(8): 082001. doi: 10.1088/1674-4926/31/8/082001

16

Temperature coefficients of grain boundary resistance variations in a ZnO/p-Si heterojunction

Liu Bingce, Liu Cihui, Xu Jun, Yi Bo

Journal of Semiconductors, 2010, 31(12): 122001. doi: 10.1088/1674-4926/31/12/122001

17

Design and performance of a complex-coupled DFB laser with sampled grating

Wang Huan, Zhu Hongliang, Jia Linghui, Chen Xiangfei, Wang Wei, et al.

Journal of Semiconductors, 2009, 30(2): 024003. doi: 10.1088/1674-4926/30/2/024003

18

80 Gb/s 2 : 1 multiplexer in 0.13-µm SiGe BiCMOS technology

Zhao Yan, Wang Zhigong, Li Wei

Journal of Semiconductors, 2009, 30(2): 025008. doi: 10.1088/1674-4926/30/2/025008

19

Electrical Structures of Nitrogen-Doped Zigzag Single-Wall Carbon Nanotubes

Song Jiuxu, Yang Yintang, Chai Changchun, Li Yuejin

Chinese Journal of Semiconductors , 2007, 28(10): 1584-1588.

20

First-Principles Calculation of Electronic Structure and Optical Properties of Anatase TiO2

Zhao Zongyan, Liu Qingju, Zhu Zhongqi, Zhang Jin

Chinese Journal of Semiconductors , 2007, 28(10): 1555-1561.

  • Search

    Advanced Search >>

    GET CITATION

    Ping Cheng, Yuming Zhang, Yimen Zhang. First-principles calculation on the concentration of intrinsic defects in 4H-SiC[J]. Journal of Semiconductors, 2013, 34(1): 013002. doi: 10.1088/1674-4926/34/1/013002
    P Cheng, Y M Zhang, Y M Zhang. First-principles calculation on the concentration of intrinsic defects in 4H-SiC[J]. J. Semicond., 2013, 34(1): 013002. doi: 10.1088/1674-4926/34/1/013002.
    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2173 Times PDF downloads: 35 Times Cited by: 0 Times

    History

    Received: 04 June 2012 Revised: 14 August 2012 Online: Published: 01 January 2013

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Ping Cheng, Yuming Zhang, Yimen Zhang. First-principles calculation on the concentration of intrinsic defects in 4H-SiC[J]. Journal of Semiconductors, 2013, 34(1): 013002. doi: 10.1088/1674-4926/34/1/013002 ****P Cheng, Y M Zhang, Y M Zhang. First-principles calculation on the concentration of intrinsic defects in 4H-SiC[J]. J. Semicond., 2013, 34(1): 013002. doi: 10.1088/1674-4926/34/1/013002.
      Citation:
      Ping Cheng, Yuming Zhang, Yimen Zhang. First-principles calculation on the concentration of intrinsic defects in 4H-SiC[J]. Journal of Semiconductors, 2013, 34(1): 013002. doi: 10.1088/1674-4926/34/1/013002 ****
      P Cheng, Y M Zhang, Y M Zhang. First-principles calculation on the concentration of intrinsic defects in 4H-SiC[J]. J. Semicond., 2013, 34(1): 013002. doi: 10.1088/1674-4926/34/1/013002.

      First-principles calculation on the concentration of intrinsic defects in 4H-SiC

      DOI: 10.1088/1674-4926/34/1/013002
      Funds:

      the Scientific Research Foundation of the Ningbo Dahongying University GY112111

      the National Natural Science Foundation of China 61006060

      the Scientific Research of Education Bureau of Zhejiang Province 201122504

      Project supported by the National Natural Science Foundation of China (No.61006060), the Scientific Research Foundation of the Ningbo Dahongying University (No.GY112111), and the Scientific Research of Education Bureau of Zhejiang Province (No.Y201122504)

      More Information
      • Corresponding author: Cheng Ping, Email:chpzmm@yahoo.com.cn
      • Received Date: 2012-06-04
      • Revised Date: 2012-08-14
      • Published Date: 2013-01-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return