Processing math: 100%
J. Semicond. > 2017, Volume 38 > Issue 1 > 014006

SPECIAL TOPIC ON PEROVSKITE SOLAR CELLS

Large area perovskite solar cell module

Longhua Cai, Lusheng Liang, Jifeng Wu, Bin Ding, Lili Gao and Bin Fan

+ Author Affiliations

 Corresponding author:

7344024@qq.com

DOI: 10.1088/1674-4926/38/1/014006

PDF

Abstract:

The recent dramatic rise in power conversion efficiencies (PCE) of perovskite solar cells has triggered intense research worldwide. However, their practical development is hampered by poor stability and low PCE values with large areas devices. Here, we developed a gas-pumping method to avoid pinholes and eliminate local structural defects over large areas of perovskite film, even for 5×5 cm2 modules, the PCE reached 10.6% and no significant degradation was found after 140 days of outdoor testing. Our approach enables the realization of high performance large-area PSCs for practical application.

Key words: perovskite solar cellsgas pumpingslot-die coaterlarge areas devices

Six years after the first report of a perovskite solar cell, the power conversion efficiency of small devices has increased from merely 3% [1] to over 22% [2]. This is the most impressive advancement in the history of photovoltaic technologies. In comparison, it took 40 years for crystalline silicon research cells to get over 22%, starting from 5%. However, the reported record efficiencies for perovskite solar cells generally come from devices with a very small active area of around 0.1 cm2 [3-6]. Depositing flat, uniform and fully covered perovskite thin-film by industrial available approaches is still a thorny issue.

Previously, we reported a facile and scalable gas pump method by accelerating the solvent evaporation to speed up the precipitation of perovskite, and deposit extremely dense and uniform perovskite thin-films. We prepared planar perovskite solar cells by using this process, reaching the efficiency up to 19% with an average efficiency of (17.38±0.7)% [7]. The perovskite films were fabricated in air conditions with a relative humidity of 45%-55%, which would have a prospect in industrial applications of large-area perovskite solar panels. We also applied this method on PET-ITO flexible substrates and fabricated flexible perovskite solar cells with efficiencies up to 11.34%[8].

This work is about our up-scaling efforts on this gas pumping method. By optimizing the equipment and techniques, we are able to fabricate large area perovskite modules of 17.3 cm2 active area with over 10% power conversion efficiencies.

The architecture of the module is shown in Fig. 1. A compact zinc oxide (ZnO) layer of about 50 nm thick was coated on top of the fluorine doped tin oxide (FTO) transparent electrode by magnetron controlled plasma sputtering. The compact ZnO layer acts as the collector of electrons and the blocking layer for positive charges. Schematic procedures to prepare the perovskite films by the gas pump method are shown in Fig. 2. First, 40% CH3NH3PbI3 precursor solution in N, N-dimethylformamide (DMF) was casted with a slotdie coater on top of the ZnO layer. Then the substrate was put into a sample chamber connecting to the gas pump system. The system is comprised of a large low pressure chamber and a sample chamber, these chambers are connected by gas drainage pipes controlled by valves. By opening the valves connecting the sample chamber and the low pressure system maintaining at 100 Pa, the fast pumping of the sample chamber leads to rapid evaporation of the DMF solvent. Brown perovskite films can be obtained with 20 s. The color of the film became dark brown after being annealed at 100 ℃ for 10 min.

Figure  1.  (Color online) The 5 × 5 cm2 module is scribed by laser into eight strips, forming seven individual cells connected in a series.
Figure  2.  Slot-die coating and pumping of perovskite liquid film.

After annealing, a carbon layer was screen-printed on top of the perovskite film from a home-made carbon paste. This carbon layer acts as a collector for positive charges and back contact. These layers were scribed by laser into eight strips, forming seven cells with series connection (Fig. 1).

Photocurrent-voltage (J-V) characteristics of the devices were measured by employing a Keithley 2400 source-measure under illumination of 100 mW/cm2 by a 450 W class AAA solar simulator equipped with an AM1.5G filter (Sol2A, Oriel Instruments). The exact light intensity was determined by a standard silicon reference cell (91150V, Oriel Instruments). A metal mask which was a little smaller than the nominal active area of the device defined as the overlap between FTO and the carbon electrode was applied when measuring the solar cell efficiency, as to avoided edge effects.

The J-V curve of the best performing 5×5 cm2 module (Fig. 3(b)) exhibits the short-circuit current density (JSC) of 3.25 mA/cm2, the open-circuit voltage (VOC) of 6.14 V, the fill factor of 0.53 and the power conversion efficiency (PCE) of 10.6%. Since the modules consisted of seven cells connected in series, the module voltage is the sum of these cells, while the module current is limited by the lowest one of them. Therefore, the homogeneities of all the four layers (FTO, ZnO, perovskite and carbon) became decisive for the performance of the module. As shown in Fig. 3(c), the average PCE of 50 modules is (9.97±0.35)%, showing that our film processing techniques are well controlled and reproducible.

Figure  3.  J-V characteristics of (a) single cell with 1 cm2 active area and (b) module with 17.3 cm2 active area. (c) A histogram of PCE for 50 samples fabricated independently with 17.6 cm2 active area.

We may also expect the resistance of the series contacts to play an important role in the solar-electricity generation. If the contact resistances become significant, the series resistance of the module will rise and hence reduce the fill factor. To verify this effect, single cells (1 cm2 active area) of the same architecture were fabricated for comparison. As shown in Fig. 3(a) and Table 1, the PCE of the best single cells reached 15.1%, which is significantly higher than that of the modules. By comparing the data given in Table 1, we found that the current outputs for the small device and module are similar (3.25 mA/cm2 × 7 = 22.75 mA/cm2), while the VOC and fill factor of the small device are larger (1.05 V×7 = 7.35 V).

Table  1.  Photovoltaic performances of small device and module.
Parameter Active area (cm2) JSC (mA/cm2) VOC (V) FF η (%)
Small device 1 22.9 1.05 0.63 15.1
Modile 17.6 3.25 6.14 0.53 10.6
DownLoad: CSV  | Show Table

Looking into the SEM image taken on the cross section of the device (Fig. 4), we can see that the carbon layer consists of large graphite flakes of several micro-meters in size filled with a lot of carbon black particles. The main conducting pathways are formed by graphite flakes which make contacts to each other. Numbers of hollows can be found between the carbon layer and the perovskite layer, which will obviously hinder the charge collection. Densely distributed hollows are also found between the contact of carbon and FTO, which should result in a high contact resistivity, adding series resistance into the module, leading to a lowered fill factor and VOC.

Figure  4.  SEM image taken on the cross-section of a module.

The operating lifetime is also a major concern for perovskite solar cells. We sealed the module with plane glass and water-proof sealant. The sealed devices were placed outdoors and tested with a certain time interval. The well capped devices were rather stable through the changing weather of the tropics in south China. As we recorded in Fig. 5, for over 140 days we did not see any trend of degradation. The fluctuation of PCE is the result from the changing solar intensity in different weather conditions.

Figure  5.  The PCE evolution of a 5 × 5 cm2 module recorded within 140 days.

Based on the techniques applied on the 5×5 cm2 modules, we further increase the module size to 45×65 cm2. A demonstration power station made of 32 perovskite panels was set up on our site (Fig. 6). These works on module fabrication and characterization are still going on, and will be published elsewhere.

Figure  6.  Large modules of 45 × 65 cm2 and the demonstration power plant.

We have developed a gas-pumping method for fabricating unique and compact perovskite film in large area. Based on these techniques, we are able to produce large area perovskite modules from 5×5 cm2 to 45×65 cm2. The power conversion efficiencies for 5×5 cm2 modules reached 10.6% with good reproducibility. No significant degradation was found after 140 days of outdoors testing. The great drop of PCE from single cells to modules can be attributed to large series resistivity resulting from the poor contact between carbon and TCO.



[1]
Kojima A, Teshima K, Shirai Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc, 2009, 131(17): 6050 doi: 10.1021/ja809598r
[2]
Best research-cell efficiencies NREL (2016). www.nrel.gov/ncpv/images/efficiency_chart.jpg
[3]
Lee M M, Teuscher J, Miyasaka T, et al. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science, 2012, 338(6107): 643 doi: 10.1126/science.1228604
[4]
Burschka J, Pellet N, Moon S, et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature, 2013, 499(7458): 316 doi: 10.1038/nature12340
[5]
Mei A Y, Li X, Liu L F, et al. A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability. Science, 2014, 345(6194): 295 doi: 10.1126/science.1254763
[6]
Yang W S, Noh J H, Jeon N J, et al. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science, 2015, 348(6240): 1234 doi: 10.1126/science.aaa9272
[7]
Ding B, Gao L L, Liang L S, et al. Facile and scalable fabrication of highly efficient lead iodide perovskite thin-film solar cells in air using gas pump method. ACS Appl Mater Interfaces, 2016, 8(31): 20067 doi: 10.1021/acsami.6b05862
[8]
Gao L L, Liang L S, Song X X, et al. Preparation of flexible perovskite solar cells by a gas pump drying method on a plastic substrate. J Mater Chem A, 2016, 4(10): 3704 doi: 10.1039/C6TA00230G
Fig. 1.  (Color online) The 5 × 5 cm2 module is scribed by laser into eight strips, forming seven individual cells connected in a series.

Fig. 2.  Slot-die coating and pumping of perovskite liquid film.

Fig. 3.  J-V characteristics of (a) single cell with 1 cm2 active area and (b) module with 17.3 cm2 active area. (c) A histogram of PCE for 50 samples fabricated independently with 17.6 cm2 active area.

Fig. 4.  SEM image taken on the cross-section of a module.

Fig. 5.  The PCE evolution of a 5 × 5 cm2 module recorded within 140 days.

Fig. 6.  Large modules of 45 × 65 cm2 and the demonstration power plant.

Table 1.   Photovoltaic performances of small device and module.

Parameter Active area (cm2) JSC (mA/cm2) VOC (V) FF η (%)
Small device 1 22.9 1.05 0.63 15.1
Modile 17.6 3.25 6.14 0.53 10.6
DownLoad: CSV
[1]
Kojima A, Teshima K, Shirai Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc, 2009, 131(17): 6050 doi: 10.1021/ja809598r
[2]
Best research-cell efficiencies NREL (2016). www.nrel.gov/ncpv/images/efficiency_chart.jpg
[3]
Lee M M, Teuscher J, Miyasaka T, et al. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science, 2012, 338(6107): 643 doi: 10.1126/science.1228604
[4]
Burschka J, Pellet N, Moon S, et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature, 2013, 499(7458): 316 doi: 10.1038/nature12340
[5]
Mei A Y, Li X, Liu L F, et al. A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability. Science, 2014, 345(6194): 295 doi: 10.1126/science.1254763
[6]
Yang W S, Noh J H, Jeon N J, et al. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science, 2015, 348(6240): 1234 doi: 10.1126/science.aaa9272
[7]
Ding B, Gao L L, Liang L S, et al. Facile and scalable fabrication of highly efficient lead iodide perovskite thin-film solar cells in air using gas pump method. ACS Appl Mater Interfaces, 2016, 8(31): 20067 doi: 10.1021/acsami.6b05862
[8]
Gao L L, Liang L S, Song X X, et al. Preparation of flexible perovskite solar cells by a gas pump drying method on a plastic substrate. J Mater Chem A, 2016, 4(10): 3704 doi: 10.1039/C6TA00230G
1

The evolution of integrated perovskite-organic solar cells: from early challenges to cutting-edge material innovations

Zia Ur Rehman, Francesco Lamberti, Zhubing He

Journal of Semiconductors, 2025, 46(5): 051802. doi: 10.1088/1674-4926/24100034

2

Compositional engineering for lead-free antimony bismuth alloy-based halide perovskite solar cells

Ziyu Cai, Junchi Zhu, Chenyuan Ding, Tao Dong, Boyang Yu, et al.

Journal of Semiconductors, 2025, 46(5): 052803. doi: 10.1088/1674-4926/24120038

3

Bilayer interfacial engineering with PEAI/OAI for synergistic defect passivation in high-performance perovskite solar cells

Chentai Cao, Yuli Tao, Quan Yang, Hai Yu, Yonggang Chen, et al.

Journal of Semiconductors, 2025, 46(5): 052805. doi: 10.1088/1674-4926/25030046

4

Improved efficiency and stability of inverse perovskite solar cells via passivation cleaning

Kunyang Ge, Chunjun Liang

Journal of Semiconductors, 2024, 45(10): 102801. doi: 10.1088/1674-4926/24040033

5

Defect passivation with potassium trifluoroborate for efficient spray-coated perovskite solar cells in air

Chen Gao, Hui Wang, Pang Wang, Jinlong Cai, Yuandong Sun, et al.

Journal of Semiconductors, 2022, 43(9): 092201. doi: 10.1088/1674-4926/43/9/092201

6

Characterization of interfaces: Lessons from the past for the future of perovskite solar cells

Wanlong Wang, Dongyang Zhang, Rong Liu, Deepak Thrithamarassery Gangadharan, Furui Tan, et al.

Journal of Semiconductors, 2022, 43(5): 051202. doi: 10.1088/1674-4926/43/5/051202

7

Efficient MAPbI3 solar cells made via drop-coating at room temperature

Lixiu Zhang, Chuantian Zuo, Liming Ding

Journal of Semiconductors, 2021, 42(7): 072201. doi: 10.1088/1674-4926/42/7/072201

8

Tailoring molecular termination for thermally stable perovskite solar cells

Xiao Zhang, Sai Ma, Jingbi You, Yang Bai, Qi Chen, et al.

Journal of Semiconductors, 2021, 42(11): 112201. doi: 10.1088/1674-4926/42/11/112201

9

Progress in flexible perovskite solar cells with improved efficiency

Hua Kong, Wentao Sun, Huanping Zhou

Journal of Semiconductors, 2021, 42(10): 101605. doi: 10.1088/1674-4926/42/10/101605

10

Recent progress in developing efficient monolithic all-perovskite tandem solar cells

Yurui Wang, Mei Zhang, Ke Xiao, Renxing Lin, Xin Luo, et al.

Journal of Semiconductors, 2020, 41(5): 051201. doi: 10.1088/1674-4926/41/5/051201

11

Simulation and application of external quantum efficiency of solar cells based on spectroscopy

Guanlin Chen, Can Han, Lingling Yan, Yuelong Li, Ying Zhao, et al.

Journal of Semiconductors, 2019, 40(12): 122701. doi: 10.1088/1674-4926/40/12/122701

12

Surface passivation of perovskite film for efficient solar cells

Yang (Michael) Yang

Journal of Semiconductors, 2019, 40(4): 040204. doi: 10.1088/1674-4926/40/4/040204

13

Improved efficiency and photo-stability of methylamine-free perovskite solar cells via cadmium doping

Yong Chen, Yang Zhao, Qiufeng Ye, Zema Chu, Zhigang Yin, et al.

Journal of Semiconductors, 2019, 40(12): 122201. doi: 10.1088/1674-4926/40/12/122201

14

Applications of cesium in the perovskite solar cells

Fengjun Ye, Wenqiang Yang, Deying Luo, Rui Zhu, Qihuang Gong, et al.

Journal of Semiconductors, 2017, 38(1): 011003. doi: 10.1088/1674-4926/38/1/011003

15

Calculation studies on point defects in perovskite solar cells

Dan Han, Chenmin Dai, Shiyou Chen

Journal of Semiconductors, 2017, 38(1): 011006. doi: 10.1088/1674-4926/38/1/011006

16

Effects of defect states on the performance of perovskite solar cells

Fengjuan Si, Fuling Tang, Hongtao Xue, Rongfei Qi

Journal of Semiconductors, 2016, 37(7): 072003. doi: 10.1088/1674-4926/37/7/072003

17

Large-signal characterizations of DDR IMPATT devices based on group Ⅲ-Ⅴ semiconductors at millimeter-wave and terahertz frequencies

Aritra Acharyya, Aliva Mallik, Debopriya Banerjee, Suman Ganguli, Arindam Das, et al.

Journal of Semiconductors, 2014, 35(8): 084003. doi: 10.1088/1674-4926/35/8/084003

18

An InGaAs graded buffer layer in solar cells

Xiaosheng Qu, Hongyin Bao, Hanieh. S. Nikjalal, Liling Xiong, Hongxin Zhen, et al.

Journal of Semiconductors, 2014, 35(1): 014011. doi: 10.1088/1674-4926/35/1/014011

19

Influence of absorber doping in a-SiC:H/a-Si:H/a-SiGe:H solar cells

Muhammad Nawaz, Ashfaq Ahmad

Journal of Semiconductors, 2012, 33(4): 042001. doi: 10.1088/1674-4926/33/4/042001

20

A novel modified charge pumping method for trapped charge characterization in nanometer-scale devices

Zhu Peng, Pan Liyang, Gu Haiming, Qiao Fengying, Deng Ning, et al.

Journal of Semiconductors, 2010, 31(10): 104008. doi: 10.1088/1674-4926/31/10/104008

1. Keshavarzi, R., Hajisharifi, F., Saki, Z. et al. Organic and perovskite solar cells based on scalable slot-die coating technique: Progress and challenges. Nano Today, 2025. doi:10.1016/j.nantod.2024.102600
2. Wang, H., Lin, W., Wang, Y. et al. Perovskite/silicon tandem solar cells: a comprehensive review of recent strategies and progress. Semiconductor Science and Technology, 2025, 40(2): 023001. doi:10.1088/1361-6641/adab11
3. Shin Thant, K.K., Seriwattanachai, C., Jittham, T. et al. Comprehensive Review on Slot-Die-Based Perovskite Photovoltaics: Mechanisms, Materials, Methods, and Marketability. Advanced Energy Materials, 2025, 15(5): 2403088. doi:10.1002/aenm.202403088
4. Kang, B., Yan, F. Emerging strategies for the large-scale fabrication of perovskite solar modules: from design to process. Energy and Environmental Science, 2025. doi:10.1039/d4ee05613b
5. Hu, Z., Wang, Z., Gao, P. Advancements in Scaling Up Perovskite Solar Cells: From Small-Area Devices to Large-Scale Modules. ChemPhysChem, 2024, 25(22): e202400587. doi:10.1002/cphc.202400587
6. Wang, D., Yan, P., Yao, C. et al. A lightweight joint metric detection approach on YOLO for hot spots in photovoltaic modules. Journal of Renewable and Sustainable Energy, 2024, 16(5): 053503. doi:10.1063/5.0232136
7. Ahmad, W., Li, C., Yu, W. et al. Revolutionizing photovoltaics: From back-contact silicon to back-contact perovskite solar cells. Materials Today Electronics, 2024. doi:10.1016/j.mtelec.2024.100106
8. Duarte, V.C.M., Andrade, L. Recent Advancements on Slot-Die Coating of Perovskite Solar Cells: The Lab-to-Fab Optimisation Process. Energies, 2024, 17(16): 3896. doi:10.3390/en17163896
9. Li, X., Dimitrov, S.D. Scaling Up Perovskite Solar Cell Fabrication: Antisolvent-Controlled Crystallization of Printed Perovskite Semiconductor. Solar RRL, 2024, 8(16): 2400293. doi:10.1002/solr.202400293
10. Samantaray, M.R., Wang, Z., Hu, D. et al. Scalable Fabrication Methods of Large-Area (n-i-p) Perovskite Solar Panels. Solar RRL, 2024, 8(14): 2400235. doi:10.1002/solr.202400235
11. Kahandal, S.S., Tupke, R.S., Bobade, D.S. et al. Perovskite solar cells: Fundamental aspects, stability challenges, and future prospects. Progress in Solid State Chemistry, 2024. doi:10.1016/j.progsolidstchem.2024.100463
12. Chakar, J., Oswald, F., Dubois, A.M. et al. Six-Month Outdoor Performance Study of Stable Perovskite Solar Cells Under Real Operating Conditions. Solar RRL, 2024, 8(11): 2400093. doi:10.1002/solr.202400093
13. Matondo, J.T., Hu, H., Ding, Y. et al. Slot-Die Coating for Scalable Fabrication of Perovskite Solar Cells and Modules. Advanced Materials Technologies, 2024, 9(10): 2302082. doi:10.1002/admt.202302082
14. AlZaidy, G.A., Alanazi, H.T. Review—Recent Advancements in Perovskites Solar Cell Materials and the Investigation of Transition Metal Oxide-Based Nanocomposites for Usage in Perovskites Solar Cells. ECS Journal of Solid State Science and Technology, 2024, 13(5): 055006. doi:10.1149/2162-8777/ad4c95
15. Pathak, C.S., Choi, H., Kim, H. et al. Recent Progress in Coating Methods for Large-Area Perovskite Solar Module Fabrication. Solar RRL, 2024, 8(4): 2300860. doi:10.1002/solr.202300860
16. Maridevaru, M.C., Ashokkumar, M., Renganathan, R. et al. Review on Characteristics, Scalable Fabrication, Advancing Strategies, and Recent Enhancements in High-Performance Perovskite Photovoltaic Cells. Encyclopedia of Renewable Energy, Sustainability and the Environment: Volume 1-4, 2024. doi:10.1016/B978-0-323-93940-9.00130-4
17. Rossi, F., Rotondi, L., Stefanelli, M. et al. Comparative life cycle assessment of different fabrication processes for perovskite solar mini-modules. EPJ Photovoltaics, 2024. doi:10.1051/epjpv/2024014
18. Zhao, J., Hou, M., Wang, Y. et al. Strategies for large-scale perovskite solar cells realization. Organic Electronics, 2023. doi:10.1016/j.orgel.2023.106892
19. Faibut, N., Jarernboon, W., Harnchana, V. et al. Anomalous p-type characteristic and recrystallization upon aging of hot-cast CH3NH3PbI3 perovskite thin films grown under atmospheric air. Thin Solid Films, 2023. doi:10.1016/j.tsf.2023.140048
20. Jin, H., Farrar, M.D., Ball, J.M. et al. Alumina Nanoparticle Interfacial Buffer Layer for Low-Bandgap Lead-Tin Perovskite Solar Cells. Advanced Functional Materials, 2023, 33(35): 2303012. doi:10.1002/adfm.202303012
21. Mahmoodpour, S., Heydari, M., Shooshtari, L. et al. Slot-Die Coated Copper Indium Disulfide as Hole-Transport Material for Perovskite Solar Cells. Sustainability (Switzerland), 2023, 15(8): 6562. doi:10.3390/su15086562
22. Szostak, R., de Souza Gonçalves, A., de Freitas, J.N. et al. In Situ and Operando Characterizations of Metal Halide Perovskite and Solar Cells: Insights from Lab-Sized Devices to Upscaling Processes. Chemical Reviews, 2023, 123(6): 3160-3236. doi:10.1021/acs.chemrev.2c00382
23. Huo, T., Yan, L., Si, J. et al. Ultrafast photoinduced carrier dynamics in single crystalline perovskite films. Journal of Materials Chemistry C, 2023, 11(11): 3736-3742. doi:10.1039/d2tc03632k
24. Bidikoudi, M., Stathatos, E. Carbon Electrodes: The Rising Star for PSC Commercialization. Electronics (Switzerland), 2023, 12(4): 992. doi:10.3390/electronics12040992
25. Ma, Y., Lu, Z., Su, X. et al. Recent Progress Toward Commercialization of Flexible Perovskite Solar Cells: From Materials and Structures to Mechanical Stabilities. Advanced Energy and Sustainability Research, 2023, 4(1): 2200133. doi:10.1002/aesr.202200133
26. Stefanelli, M., Vesce, L., Di Carlo, A. Upscaling of Carbon-Based Perovskite Solar Module. Nanomaterials, 2023, 13(2): 313. doi:10.3390/nano13020313
27. Singh, R., Nazim, M., Kini, G.P. et al. Perovskite-Based Photovoltaics for Artificial Indoor Light Harvesting: A Critical Review. Solar RRL, 2023, 7(1): 2200953. doi:10.1002/solr.202200953
28. Wang, F., Han, Y., Duan, D. et al. Recent progress of scalable perovskite solar cells and modules. Energy Reviews, 2022, 1(2): 100010. doi:10.1016/j.enrev.2022.100010
29. Luo, X., Lin, X., Gao, F. et al. Recent progress in perovskite solar cells: from device to commercialization. Science China Chemistry, 2022, 65(12): 2369-2416. doi:10.1007/s11426-022-1426-x
30. Chu, L., Zhai, S., Ahmad, W. et al. High-performance large-area perovskite photovoltaic modules. Nano Research Energy, 2022, 1(2): e9120024. doi:10.26599/NRE.2022.9120024
31. Qiang, Z., Wang, C., Gao, X. et al. Challenges of Scalable Development for Perovskite/Silicon Tandem Solar Cells. ACS Applied Energy Materials, 2022, 5(6): 6499-6515. doi:10.1021/acsaem.2c00354
32. Maafa, I.M.. All-Inorganic Perovskite Solar Cells: Recent Advancements and Challenges. Nanomaterials, 2022, 12(10): 1651. doi:10.3390/nano12101651
33. Parida, B., Singh, A., Kalathil Soopy, A.K. et al. Recent Developments in Upscalable Printing Techniques for Perovskite Solar Cells. Advanced Science, 2022, 9(14): 2200308. doi:10.1002/advs.202200308
34. Yang, Z., Liu, Z., Ahmadi, V. et al. Recent Progress on Metal Halide Perovskite Solar Minimodules. Solar RRL, 2022, 6(3): 2100458. doi:10.1002/solr.202100458
35. Lee, J., Kim, J., Kim, C.-S. et al. Compact SnO2 /Mesoporous TiO2 Bilayer Electron Transport Layer for Perovskite Solar Cells Fabricated at Low Process Temperature. Nanomaterials, 2022, 12(4): 718. doi:10.3390/nano12040718
36. Yan, J., Savenije, T.J., Mazzarella, L. et al. Progress and challenges on scaling up of perovskite solar cell technology. Sustainable Energy and Fuels, 2022, 6(2): 243-266. doi:10.1039/d1se01045j
37. Thi Kim, C.M., Atourki, L., Ouafi, M. et al. A synopsis of progressive transition in precursor inks development for metal halide perovskites-based photovoltaic technology. Journal of Materials Chemistry A, 2021, 9(47): 26650-26668. doi:10.1039/d1ta06556d
38. Xu, C., Zhao, X., Ma, J. et al. Recent Progresses in Carbon Counter Electrode Materials for Perovskite Solar Cells and Modules. ChemElectroChem, 2021, 8(23): 4396-4411. doi:10.1002/celc.202100811
39. Wang, H., Wang, Y., Xuan, Z. et al. Progress in perovskite solar cells towards commercialization—a review. Materials, 2021, 14(21): 6569. doi:10.3390/ma14216569
40. Sahare, S., Pham, H.D., Angmo, D. et al. Emerging Perovskite Solar Cell Technology: Remedial Actions for the Foremost Challenges. Advanced Energy Materials, 2021, 11(42): 2101085. doi:10.1002/aenm.202101085
41. Ling, J., Kizhakkedath, P.K.K., Watson, T.M. et al. A Perspective on the Commercial Viability of Perovskite Solar Cells. Solar RRL, 2021, 5(11): 2100401. doi:10.1002/solr.202100401
42. Chen, Z., He, P., Wu, D. et al. Processing and Preparation Method for High-Quality Opto-Electronic Perovskite Film. Frontiers in Materials, 2021. doi:10.3389/fmats.2021.723169
43. Pradid, P., Sanglee, K., Thongprong, N. et al. Carbon electrodes in perovskite photovoltaics. Materials, 2021, 14(20): 5989. doi:10.3390/ma14205989
44. Li, J., Dewi, H.A., Wang, H. et al. Co-Evaporated MAPbI3 with Graded Fermi Levels Enables Highly Performing, Scalable, and Flexible p-i-n Perovskite Solar Cells. Advanced Functional Materials, 2021, 31(42): 2103252. doi:10.1002/adfm.202103252
45. Wang, K.-L., Zhou, Y.-H., Lou, Y.-H. et al. Perovskite indoor photovoltaics: opportunity and challenges. Chemical Science, 2021, 12(36): 11936-11954. doi:10.1039/d1sc03251h
46. Mirabi, E., Akrami Abarghuie, F., Arazi, R. Integration of buildings with third-generation photovoltaic solar cells: A review. Clean Energy, 2021, 5(3): 505-526. doi:10.1093/ce/zkab031
47. Benitez-Rodriguez, J.F., Chen, D., Gao, M. et al. Roll-to-Roll Processes for the Fabrication of Perovskite Solar Cells under Ambient Conditions. Solar RRL, 2021, 5(9): 2100341. doi:10.1002/solr.202100341
48. Murugan, P., Hu, T., Hu, X. et al. Current Development toward Commercialization of Metal-Halide Perovskite Photovoltaics. Advanced Optical Materials, 2021, 9(17): 2100390. doi:10.1002/adom.202100390
49. Onuigbo, I.O., Abdulrahman, G.N., Onwujiuba, C. et al. Magnesium-doped green solar cells using natural chromophores. International Nano Letters, 2021, 11(3): 205-214. doi:10.1007/s40089-021-00334-0
50. Cheng, J., Liu, F., Tang, Z. et al. Scalable Blade Coating: A Technique Accelerating the Commercialization of Perovskite-Based Photovoltaics. Energy Technology, 2021, 9(8): 2100204. doi:10.1002/ente.202100204
51. Liu, H., Yu, M.-H., Lee, C.-C. et al. Technical Challenges and Perspectives for the Commercialization of Solution-Processable Solar Cells. Advanced Materials Technologies, 2021, 6(6): 2000960. doi:10.1002/admt.202000960
52. Gao, L., You, J., Liu, S.F. Superior photovoltaics/optoelectronics of two-dimensional halide perovskites. Journal of Energy Chemistry, 2021. doi:10.1016/j.jechem.2020.08.022
53. Mariani, P., Najafi, L., Bianca, G. et al. Low-Temperature Graphene-Based Paste for Large-Area Carbon Perovskite Solar Cells. ACS Applied Materials and Interfaces, 2021, 13(19): 22368-22380. doi:10.1021/acsami.1c02626
54. Wu, Z., Li, W., Ye, Y. et al. Recent progress in meniscus coating for large-area perovskite solar cells and solar modules. Sustainable Energy and Fuels, 2021, 5(7): 1926-1951. doi:10.1039/d0se01774d
55. Blaga, C., Christmann, G., Boccard, M. et al. Palliating the efficiency loss due to shunting in perovskite/silicon tandem solar cells through modifying the resistive properties of the recombination junction. Sustainable Energy and Fuels, 2021, 5(7): 2036-2045. doi:10.1039/d1se00030f
56. Yang, Z., Zhang, W., Wu, S. et al. Slot-die coating large-area formamidinium-cesium perovskite film for efficient and stable parallel solar module. Science Advances, 2021, 7(18): eabg3749. doi:10.1126/sciadv.abg3749
57. Li, D., Zhang, D., Lim, K.-S. et al. A Review on Scaling Up Perovskite Solar Cells. Advanced Functional Materials, 2021, 31(12): 2008621. doi:10.1002/adfm.202008621
58. Yang, Z., Wu, D., Yan, X. et al. Research Progresses on the Preparation Technologies Towards Large-area Perovskite Thin Films | [大面积钙钛矿薄膜制备技术的研究进展]. Cailiao Daobao/Materials Reports, 2021, 35(1): 01046-01057. doi:10.11896/cldb.20030221
59. Jang, D., Yang, F., Dong, L. et al. Upscaling of Perovskite Photovoltaics. Perovskite Solar Cells: Materials, Processes, and Devices, 2021. doi:10.1002/9783527825790.ch14
60. Ma, Y., Zhao, Q. A strategic review on processing routes towards scalable fabrication of perovskite solar cells. Journal of Energy Chemistry, 2021. doi:10.1016/j.jechem.2021.05.019
61. Galagan, Y.. Perovskite solar cells from lab to fab: The main challenges to access the market. Oxford Open Materials Science, 2021, 1(1): itaa007. doi:10.1093/oxfmat/itaa007
62. Ghosh, A.. Potential of building integrated and attached/applied photovoltaic (BIPV/BAPV) for adaptive less energy-hungry building's skin: A comprehensive review. Journal of Cleaner Production, 2020. doi:10.1016/j.jclepro.2020.123343
63. Li, J., Dewi, H.A., Wang, H. et al. Design of Perovskite Thermally Co-Evaporated Highly Efficient Mini-Modules with High Geometrical Fill Factors. Solar RRL, 2020, 4(12): 2000473. doi:10.1002/solr.202000473
64. Gao, L., Yan, Y., Li, Y. et al. Comparison of Physical Isolation on Large Active Area Perovskite Solar Cells. Chemical Research in Chinese Universities, 2020, 36(6): 1279-1283. doi:10.1007/s40242-020-0060-z
65. Bogachuk, D., Zouhair, S., Wojciechowski, K. et al. Low-temperature carbon-based electrodes in perovskite solar cells. Energy and Environmental Science, 2020, 13(11): 3880-3916. doi:10.1039/d0ee02175j
66. Subbiah, A.S., Isikgor, F.H., Howells, C.T. et al. High-performance perovskite single-junction and textured perovskite/silicon tandem solar cells via slot-die-coating. ACS Energy Letters, 2020, 5(9): 3034-3040. doi:10.1021/acsenergylett.0c01297
67. Gao, W., Chen, C., Ran, C. et al. A-Site Cation Engineering of Metal Halide Perovskites: Version 3.0 of Efficient Tin-Based Lead-Free Perovskite Solar Cells. Advanced Functional Materials, 2020, 30(34): 2000794. doi:10.1002/adfm.202000794
68. Roy, A., Ghosh, A., Bhandari, S. et al. Perovskite solar cells for bipv application: A review. Buildings, 2020, 10(7): 1-33. doi:10.3390/buildings10070129
69. Schuster, C.S.. Analytical framework for the assessment and modelling of multi-junction solar cells in the outdoors. Renewable Energy, 2020. doi:10.1016/j.renene.2020.01.002
70. Li, J., Wang, H., Chin, X.Y. et al. Highly Efficient Thermally Co-evaporated Perovskite Solar Cells and Mini-modules. Joule, 2020, 4(5): 1035-1053. doi:10.1016/j.joule.2020.03.005
71. Verma, A., Martineau, D., Hack, E. et al. Towards industrialization of perovskite solar cells using slot die coating. Journal of Materials Chemistry C, 2020, 8(18): 6124-6135. doi:10.1039/d0tc00327a
72. Wali, Q., Iftikhar, F.J., Elumalai, N.K. et al. Advances in stable and flexible perovskite solar cells. Current Applied Physics, 2020, 20(5): 720-737. doi:10.1016/j.cap.2020.03.007
73. Liu, C., Cheng, Y.-B., Ge, Z. Understanding of perovskite crystal growth and film formation in scalable deposition processes. Chemical Society Reviews, 2020, 49(6): 1653-1687. doi:10.1039/c9cs00711c
74. Su, H., Xiao, J., Li, Q. et al. Carbon film electrode based square-centimeter scale planar perovskite solar cells exceeding 17% efficiency. Materials Science in Semiconductor Processing, 2020. doi:10.1016/j.mssp.2019.104809
75. Gao, L., Yang, G. Organic-Inorganic Halide Perovskites: From Crystallization of Polycrystalline Films to Solar Cell Applications. Solar RRL, 2020, 4(2): 1900200. doi:10.1002/solr.201900200
76. Shalan, A.E.. Challenges and approaches towards upscaling the assembly of hybrid perovskite solar cells. Materials Advances, 2020, 1(3): 292-309. doi:10.1039/d0ma00128g
77. Verma, A., Martineau, D., Abdolhosseinzadeh, S. et al. Inkjet printed mesoscopic perovskite solar cells with custom design capability. Materials Advances, 2020, 1(2): 153-160. doi:10.1039/d0ma00077a
78. Xiang, W., Tress, W. Review on Recent Progress of All-Inorganic Metal Halide Perovskites and Solar Cells. Advanced Materials, 2019, 31(44): 1902851. doi:10.1002/adma.201902851
79. Qiu, L., He, S., Ono, L.K. et al. Scalable Fabrication of Metal Halide Perovskite Solar Cells and Modules. ACS Energy Letters, 2019, 4(9): 2147-2167. doi:10.1021/acsenergylett.9b01396
80. He, R., Huang, X., Chee, M. et al. Carbon-based perovskite solar cells: From single-junction to modules. Carbon Energy, 2019, 1(1): 109-123. doi:10.1002/cey2.11
81. Wu, C., Wang, D., Zhang, Y. et al. FAPbI3 Flexible Solar Cells with a Record Efficiency of 19.38% Fabricated in Air via Ligand and Additive Synergetic Process. Advanced Functional Materials, 2019, 29(34): 1902974. doi:10.1002/adfm.201902974
82. Howard, I.A., Abzieher, T., Hossain, I.M. et al. Coated and Printed Perovskites for Photovoltaic Applications. Advanced Materials, 2019, 31(26): 1806702. doi:10.1002/adma.201806702
83. Swartwout, R., Hoerantner, M.T., Bulović, V. Scalable Deposition Methods for Large-area Production of Perovskite Thin Films. Energy and Environmental Materials, 2019, 2(2): 119-145. doi:10.1002/eem2.12043
84. Wong-Stringer, M., Routledge, T.J., McArdle, T. et al. A flexible back-contact perovskite solar micro-module. Energy and Environmental Science, 2019, 12(6): 1928-1937. doi:10.1039/c8ee03517b
85. Gao, L., Chen, L., Huang, S. et al. Series and Parallel Module Design for Large-Area Perovskite Solar Cells. ACS Applied Energy Materials, 2019, 2(5): 3851-3859. doi:10.1021/acsaem.9b00531
86. Huang, F., Li, M., Siffalovic, P. et al. From scalable solution fabrication of perovskite films towards commercialization of solar cells. Energy and Environmental Science, 2019, 12(2): 518-549. doi:10.1039/c8ee03025a
87. Heo, J.H., Lee, D.S., Shin, D.H. et al. Recent advancements in and perspectives on flexible hybrid perovskite solar cells. Journal of Materials Chemistry A, 2019, 7(3): 888-900. doi:10.1039/c8ta09452g
88. Almosni, S., Delamarre, A., Jehl, Z. et al. Material challenges for solar cells in the twenty-first century: directions in emerging technologies. Science and Technology of Advanced Materials, 2018, 19(1): 336-369. doi:10.1080/14686996.2018.1433439
89. Heasley, R., Davis, L.M., Chua, D. et al. Vapor Deposition of Transparent, p-Type Cuprous Iodide Via a Two-Step Conversion Process. ACS Applied Energy Materials, 2018, 1(12): 6953-6963. doi:10.1021/acsaem.8b01363
90. Galagan, Y., Di Giacomo, F., Gorter, H. et al. Roll-to-Roll Slot Die Coated Perovskite for Efficient Flexible Solar Cells. Advanced Energy Materials, 2018, 8(32): 1801935. doi:10.1002/aenm.201801935
91. Burkitt, D., Searle, J., A.Worsley, D. et al. Sequential slot-die deposition of perovskite solar cells using dimethylsulfoxide lead iodide ink. Materials, 2018, 11(11): 2106. doi:10.3390/ma11112106
92. Kim, D.H., Whitaker, J.B., Li, Z. et al. Outlook and Challenges of Perovskite Solar Cells toward Terawatt-Scale Photovoltaic Module Technology. Joule, 2018, 2(8): 1437-1451. doi:10.1016/j.joule.2018.05.011
93. Galagan, Y.. Perovskite Solar Cells: Toward Industrial-Scale Methods. Journal of Physical Chemistry Letters, 2018, 9(15): 4326-4335. doi:10.1021/acs.jpclett.8b01356
94. Abbel, R., Galagan, Y., Groen, P. Roll-to-Roll Fabrication of Solution Processed Electronics. Advanced Engineering Materials, 2018, 20(8): 1701190. doi:10.1002/adem.201701190
95. Di Giacomo, F., Shanmugam, S., Fledderus, H. et al. Up-scalable sheet-to-sheet production of high efficiency perovskite module and solar cells on 6-in. substrate using slot die coating. Solar Energy Materials and Solar Cells, 2018. doi:10.1016/j.solmat.2017.11.010
96. Rong, Y., Ming, Y., Ji, W. et al. Toward Industrial-Scale Production of Perovskite Solar Cells: Screen Printing, Slot-Die Coating, and Emerging Techniques. Journal of Physical Chemistry Letters, 2018, 9(10): 2707-2713. doi:10.1021/acs.jpclett.8b00912
97. Xu, Q., Yang, D., Lv, J. et al. Perovskite Solar Absorbers: Materials by Design. Small Methods, 2018, 2(5): 1700316. doi:10.1002/smtd.201700316
98. Yang, M., Kim, D.H., Klein, T.R. et al. Highly Efficient Perovskite Solar Modules by Scalable Fabrication and Interconnection Optimization. ACS Energy Letters, 2018, 3(2): 322-328. doi:10.1021/acsenergylett.7b01221
99. Kajal, P., Ghosh, K., Powar, S. Manufacturing Techniques of Perovskite Solar Cells. Energy, Environment, and Sustainability, 2018. doi:10.1007/978-981-10-7206-2_16
100. Cai, Y., Liang, L., Gao, P. Promise of commercialization: Carbon materials for low-cost perovskite solar cells. Chinese Physics B, 2018, 27(1): 018805. doi:10.1088/1674-1056/27/1/018805
101. Yang, Z., Zhang, S., Li, L. et al. Research progress on large-area perovskite thin films and solar modules. Journal of Materiomics, 2017, 3(4): 231-244. doi:10.1016/j.jmat.2017.09.002
102. Chen, H., Yang, S. Stabilizing and scaling up carbon-based perovskite solar cells. Journal of Materials Research, 2017, 32(16): 3011-3020. doi:10.1557/jmr.2017.294
  • Search

    Advanced Search >>

    GET CITATION

    Longhua Cai, Lusheng Liang, Jifeng Wu, Bin Ding, Lili Gao, Bin Fan. Large area perovskite solar cell module[J]. Journal of Semiconductors, 2017, 38(1): 014006. doi: 10.1088/1674-4926/38/1/014006
    L H Cai, L S Liang, J F Wu, B Ding, L L Gao, B Fan. Large area perovskite solar cell module[J]. J. Semicond., 2017, 38(1): 014006. doi: 10.1088/1674-4926/38/1/014006.
    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 6399 Times PDF downloads: 157 Times Cited by: 102 Times

    History

    Received: 23 August 2016 Revised: 06 December 2016 Online: Published: 01 January 2017

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Longhua Cai, Lusheng Liang, Jifeng Wu, Bin Ding, Lili Gao, Bin Fan. Large area perovskite solar cell module[J]. Journal of Semiconductors, 2017, 38(1): 014006. doi: 10.1088/1674-4926/38/1/014006 ****L H Cai, L S Liang, J F Wu, B Ding, L L Gao, B Fan. Large area perovskite solar cell module[J]. J. Semicond., 2017, 38(1): 014006. doi: 10.1088/1674-4926/38/1/014006.
      Citation:
      Longhua Cai, Lusheng Liang, Jifeng Wu, Bin Ding, Lili Gao, Bin Fan. Large area perovskite solar cell module[J]. Journal of Semiconductors, 2017, 38(1): 014006. doi: 10.1088/1674-4926/38/1/014006 ****
      L H Cai, L S Liang, J F Wu, B Ding, L L Gao, B Fan. Large area perovskite solar cell module[J]. J. Semicond., 2017, 38(1): 014006. doi: 10.1088/1674-4926/38/1/014006.

      Large area perovskite solar cell module

      DOI: 10.1088/1674-4926/38/1/014006
      More Information
      • Corresponding author:

        7344024@qq.com

      • Received Date: 2016-08-23
      • Revised Date: 2016-12-06
      • Published Date: 2017-01-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return