SPECIAL TOPIC ON 2D MATERIALS AND DEVICES

Recent advances in preparation,properties and device applications of two-dimensional h-BN and its vertical heterostructures

Huihui Yang1, 2, 3, Feng Gao1, 2, 3, Mingjin Dai1, 2, 3, Dechang Jia1, Yu Zhou1 and Ping'an Hu1, 2, 3

+ Author Affiliations

 Corresponding author: Pingan Hu,Email: hupa@hit.edu.cn

PDF

Abstract: Two-dimensional (2D) layered materials, such as graphene, hexagonal boron nitride (h-BN), molybdenum disulfide (MoS2), have attracted tremendous interest due to their atom-thickness structures and excellent physical properties. h-BN has predominant advantages as the dielectric substrate in FET devices due to its outstanding properties such as chemically inert surface, being free of dangling bonds and surface charge traps, especially the large-band-gap insulativity. h-BN involved vertical heterostructures have been widely exploited during the past few years. Such heterostructures adopting h-BN as dielectric layers exhibit enhanced electronic performance, and provide further possibilities for device engineering. Besides, a series of intriguing physical phenomena are observed in certain vertical heterostructures, such as superlattice potential induced replication of Dirac points, band gap tuning, Hofstadter butterfly states, gate-dependent pseudospin mixing. Herein we focus on the rapid developments of h-BN synthesis and fabrication of vertical heterostructures devices based on h-BN, and review the novel properties as well as the potential applications of the heterostructures composed of h-BN.

Key words: h-BNheterostructuresgraphenevan der Waals epitaxyFETs



[1]
Pakde A, Bando Y, Golberg D. Nano boron nitride flatland. Chem Soc Rev, 2014, 43:934 doi: 10.1039/C3CS60260E
[2]
Watanabe K, Taniguchi T, Kanda H. Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nat Mater, 2004, 3(6):404 doi: 10.1038/nmat1134
[3]
Wang H L, Zhang X W, Liu H, et al. Synthesis of large-sized single-crystal hexagonal boron nitride domains on nickel foils by ion beam sputtering deposition. Adv Mater, 2015, 27(48):8109 doi: 10.1002/adma.201504042
[4]
Ahmed K, Dahal R, Weltz A, et al. Growth of hexagonal boron nitride on (111) Si for deep UV photonics and thermal neutron detection. Appl Phys Lett, 2016, 109(11):113501 doi: 10.1063/1.4962831
[5]
Yin J, Li J D, Hang Y, et al. Boron nitride nanostructures:fabrication, functionalization and applications. Small, 2016, 12(22):2942 doi: 10.1002/smll.201600053
[6]
Britnell L, Gorbachev R V, Jalil R, et al. Field-effect tunneling transistor based on vertical graphene heterostructures. Science, 2012, 335(6071):947 doi: 10.1126/science.1218461
[7]
Dean C R, Young A F, Meric I, et al. Boron nitride substrates for high-quality graphene electronics. Nat Nanotechnol, 2010, 5:722 doi: 10.1038/nnano.2010.172
[8]
Li L K, Ye G J, Tran V, et al. Quantum oscillations in a twodimensional electron gas in black phosphorus thin films. Nat Nanotechnol, 2015, 10:608 doi: 10.1038/nnano.2015.91
[9]
Giovannetti G, Khomyakov P A, Brocks G, et al. Substrateinduced band gap in graphene on hexagonal boron nitride:ab initio density functional calculations. Phys Rev B, 2007, 76(7):073103 doi: 10.1103/PhysRevB.76.073103
[10]
Yang W, Chen G R, Shi Z W, et al. Epitaxial growth of singledomain graphene on hexagonal boron nitride. Nat Mater, 2013, 12:792 doi: 10.1038/nmat3695
[11]
Wang E, Lu X B, Ding S J, et al. Gaps induced by inversion symmetry breaking and second-generation Dirac cones in graphene/hexagonal boron nitride. Nat Phys, 2016, 12:1111 doi: 10.1038/nphys3856
[12]
Yankowitz M, Xue J M, Cormode D, et al. Emergence of superlattice Dirac points in graphene on hexagonal boron nitride. Nat Phys, 2012, 8:382 doi: 10.1038/nphys2272
[13]
Ponomarenko L A, Gorbachev R V, Yu G L, et al. Cloning of Dirac fermions in graphene superlattices. Nature, 2013, 497:594 doi: 10.1038/nature12187
[14]
Gorbachev R V, Song J C W, Yu G L, et al. Detecting topological currents in graphene superlattices. Science, 2014, 346(6208):448 doi: 10.1126/science.1254966
[15]
Novoselov K S, Jiang D, Schedin F, et al. Two-dimensional atomic crystals. Proc Natl Acad Sci USA, 2005, 102(30):10451 doi: 10.1073/pnas.0502848102
[16]
Pacilé D, Meyer J C, Girit Ç Ö, et al. The two-dimensional phase of boron nitride:few-atomic-layer sheets and suspended membranes. Appl Phys Lett, 2008, 92(13):133107 doi: 10.1063/1.2903702
[17]
Alem N, Erni R, Kisielowski C, et al. Atomically thin hexagonal boron nitride probed by ultrahigh-resolution transmission electron microscopy. Phys Rev B, 2009, 80(15):155425 doi: 10.1103/PhysRevB.80.155425
[18]
Jin C H, Lin F, Suenaga K, et al. Fabrication of a freestanding boron nitride single layer and its defect assignments. Phys Rev Lett, 2009, 102(19):195505 doi: 10.1103/PhysRevLett.102.195505
[19]
Lee C G, Li Q Y, Kalb W, et al. Frictional characteristics of atomically thin sheets. Science, 2010, 328(5974):76 doi: 10.1126/science.1184167
[20]
Gorbachev R V, Riaz I, Nair R R, et al. Hunting for monolayer boron nitride:optical and Raman signatures. Small, 2011, 7(4):465 doi: 10.1002/smll.201001628
[21]
Golberg D, Bando Y, Huang Y, et al. Boron nitride nanotubes and nanosheets. ACS Nano, 2010, 4(6):2979 doi: 10.1021/nn1006495
[22]
Zhi C Y, Bando Y, Tang C C, et al. Large-scale fabrication of boron nitride nanosheets and their utilization in polymeric composites with improved thermal and mechanical properties. Adv Mater, 2009, 21(28):2889 doi: 10.1002/adma.v21:28
[23]
Lin Y, Williams T V, Connell J W. Soluble, exfoliated hexagonal boron nitride nanosheets. J Phys Chem Lett, 2010, 1(1):277 doi: 10.1021/jz9002108
[24]
Wang Y, Shi Z X, Yin J. Boron nitride nanosheets:large-scale exfoliation in methanesulfonic acid and their composites with polybenzimidazole. J Mater Chem, 2011, 21:11371 doi: 10.1039/c1jm10342c
[25]
Lin Y, Williams T V, Xu T B, et al. Aqueous dispersions of fewlayered and monolayered hexagonal boron nitride nanosheets from sonication-assisted hydrolysis:critical role of water. J Phys Chem, 2011, 115:2679 doi: 10.1021/jp1105778
[26]
Zhou K G, Mao N N, Wang H X, et al. A mixed-solvent strategy for efficient exfoliation of inorganic graphene analogues. Angew Chem Int Edit, 2011, 50(46):10839 doi: 10.1002/anie.v50.46
[27]
Sarmazdeh Z R, Jafari S H, Ahmadi S J, et al. Large-scale exfoliation of hexagonal boron nitride with combined fast quenching and liquid exfoliation strategies. J Mater Sci, 2016, 51(6):3162 doi: 10.1007/s10853-015-9626-4
[28]
Zhu W S, Gao X, Li Q, et al. Controlled gas exfoliation of boron nitride into few-layered nanosheets. Angew Chem Int Edit, 2016, 128:10924 doi: 10.1002/ange.201605515
[29]
Nagashima A, Tejima N, Gamou Y, et al. Electronic dispersion relations of monolayer hexagonal boron nitride formed on the Ni(111) surface. Phys Rev B, 1995, 51(7):4606 doi: 10.1103/PhysRevB.51.4606
[30]
Koepke J C, Wood J D, Chen Y F, et al. Role of pressure in the growth of hexagonal boron nitride thin films from ammoniaborane. Chem Mater, 2016, 28(12):4169 doi: 10.1021/acs.chemmater.6b00396
[31]
Auwärter W, Suter H U, Sachdev H, et al. Synthesis of one monolayer of hexagonal boron nitride on Ni(111) from BTrichloroborazine (ClBNH)3. Chem Mater, 2004, 16(2):343 doi: 10.1021/cm034805s
[32]
Müller F, Stöwe K, Sachdev H. Symmetry versus commensurability:epitaxial growth of hexagonal boron nitride on Pt(111) from B-Trichloroborazine (ClBNH)3. Chem Mater, 2005, 17(13):3464 doi: 10.1021/cm048629e
[33]
Shi Y M, Hamsen C, Jia X T, et al. Synthesis of few-layer hexagonal boron nitride thin film by chemical vapor deposition. Nano Lett, 2010, 10(10):4134 doi: 10.1021/nl1023707
[34]
Song L, Ci L J, Lu H, et al. Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett, 2010, 10(8):3209 doi: 10.1021/nl1022139
[35]
Lee K H, Shin H J, Lee J, et al. Large-scale synthesis of high-quality hexagonal boron nitride nanosheets for large-area graphene electronics. Nano Lett, 2012, 12(1):714 doi: 10.1021/nl203635v
[36]
[37]
Ismach A, Chou H, Ferrer D A, et al. Toward the controlled synthesis of hexagonal boron nitride films. ACS Nano, 2012, 6(7):6378 doi: 10.1021/nn301940k
[38]
Chatterjee S, Luo Z T, Acerce M, et al. Chemical vapor deposition of boron nitride nanosheets on metallic substrates via decaborane/ammonia reactions. Chem Mater, 2011, 23(20):4414 doi: 10.1021/cm201955v
[39]
Kim K K, Hsu A, Jia X T, et al. Synthesis of monolayer hexagonal boron nitride on Cu foil using chemical vapor deposition. Nano Lett, 2012, 12(1):162 doi: 10.1021/nl203249a
[40]
Behura S J, Nguyen P, Che S W, et al. Large-area, transferfree, oxide-assisted synthesis of hexagonal boron nitride films and their heterostructures with MoS2 and WS2. J Am Chem Soc, 2015, 137(40):13060 doi: 10.1021/jacs.5b07739
[41]
Han J H, Lee J Y, Kwon H M, et al. Synthesis of waferscale hexagonal boron nitride monolayers free of aminoborane nanoparticles by chemical vapor deposition. Nanotechnology, 2014, 25(14):145604 doi: 10.1088/0957-4484/25/14/145604
[42]
Morsche M, Corso M, Greber T, et al. Formation of single layer h-BN on Pd(111). Surf Sci, 2006, 600(16):3280 doi: 10.1016/j.susc.2006.06.016
[43]
Müller F, Hüfner S, Sachdev H, et al. Epitaxial growth of hexagonal boron nitride on Ag(111). Phys Rev B, 2010, 82(11):113406 doi: 10.1103/PhysRevB.82.113406
[44]
Müller F, Hüfner S, Sachdev H. One-dimensional structure of boron nitride on chromium (110)-a study of the growth of boron nitride by chemical vapour deposition of borazine. Surf Sci, 2008, 602(22):3467 doi: 10.1016/j.susc.2008.06.037
[45]
Corso M, Greber T, Osterwalder J. H-BN on Pd(110):a tunable system for self-assembled nanostructures. Surf Sci, 2005, 577(2/3):78 https://www.researchgate.net/publication/239169796_H-BN_on_Pd1_1_0_A_tunable_system_for_self-assembled_nanostructures
[46]
Goriachko A, He Y B, Knapp M, et al. Self-assembly of a hexagonal boron nitride nanomesh on Ru(0001). Langmuir, 2007, 23:2928 doi: 10.1021/la062990t
[47]
Tay R Y, Griep M H, Mallick G, et al. Growth of large singlecrystalline two-dimensional boron nitride hexagons on electropolished copper. Nano Lett, 2014, 14(2):839 doi: 10.1021/nl404207f
[48]
Wang L F, Wu B, Chen J, et al. Monolayer hexagonal boron nitride films with large domain size and clean interface for enhancing the mobility of graphene-based field-effect transistors. Adv Mater, 2014, 26(10):1559 doi: 10.1002/adma.201304937
[49]
Wang J, Chen L F, Wu N, et al. Graphene on liquid metal by chemical vapour deposition at reduced temperature. Carbon, 2016, 96:799 doi: 10.1016/j.carbon.2015.10.015
[50]
Geng D C, Wu B, Guo Y L, et al. Uniform hexagonal graphene flakes and films grown on liquid copper surface. Proc Natl Acad Sci USA, 2012, 109(21):17992 https://www.researchgate.net/publication/224052905_Uniform_hexagonal_graphene_flakes_and_films_grown_on_liquid_copper_surface
[51]
Tan L F, Han J L, Mendes R G, et al. Self-aligned singlecrystalline hexagonal boron nitride arrays:toward higher integrated electronic devices. Adv Electron Mater, 2015, 1(11):1500223 doi: 10.1002/aelm.201500223
[52]
Khan M H, Huang Z G, Xiao F, et al. Synthesis of large and few atomic layers of hexagonal boron nitride on melted copper. Sci Rep, 2015, 5:7743 doi: 10.1038/srep07743
[53]
Jang A R, Hong S, Hyun C, et al. Wafer-scale and wrinkle-free epitaxial growth of single-orientated multilayer hexagonal boron nitride on sapphire. Nano Lett, 2016, 16(5):3360 doi: 10.1021/acs.nanolett.6b01051
[54]
Caneva S, Weatherup R S, Bayer B C, et al. Nucleation control for large, single crystalline domains of monolayer hexagonal boron nitride via Si-doped Fe catalysts. Nano Lett, 2015, 15(3):1867 doi: 10.1021/nl5046632
[55]
Lu G Y, Wu T R, Yuan Q H, et al. Synthesis of large singlecrystal hexagonal boron nitride grains on Cu-Ni alloy. Nat Commun, 2015, 6:6160 doi: 10.1038/ncomms7160
[56]
Li J, Wang X Y, Liu X R, et al. Facile growth of centimeter-sized single-crystal graphene on copper foil at atmospheric pressure. J Mater Chem C, 2015, 3:3530 doi: 10.1039/C5TC00235D
[57]
Guo W, Jing F, Xiao J, et al. Oxidative-etching-assisted synthesis of centimeter-sized single-crystalline graphene. Adv Mater, 2016, 28(16):3152 doi: 10.1002/adma.201503705
[58]
Tay R Y, Park H J, Ryu G H, et al. Synthesis of aligned symmetrical multifaceted monolayer hexagonal boron nitride single crystals on resolidified copper. Nanoscale, 2016, 8(4):2434 doi: 10.1039/C5NR08036C
[59]
Wu Q K, Park J H, Park S, et al. Single crystalline film of hexagonal boron nitride atomic monolayer by controlling nucleation seeds and domains. Sci Rep, 2015, 5:16159 doi: 10.1038/srep16159
[60]
Stehle Y, Meyerlll H M, Unocic R R, et al. Synthesis of hexagonal boron nitride monolayer:control of nucleation and crystal morphology. Chem Mater, 2015, 27(23):8041 doi: 10.1021/acs.chemmater.5b03607
[61]
Yin J, Yu J, Li X M, et al. Large single-crystal hexagonal boron nitride monolayer domains with controlled morphology and straight merging boundaries. Small, 2015, 11(35):4497 doi: 10.1002/smll.v11.35
[62]
Zhang Z H, Liu Y Y, Yang Y, et al. Growth mechanism and morphology of hexagonal boron nitride. Nano Lett, 2016, 16(2):1398 doi: 10.1021/acs.nanolett.5b04874
[63]
Song X J, Gao J F, Nie Y F, et al. Chemical vapor deposition growth of large-scale hexagonal boron nitride with controllable orientation. Nano Res, 2015, 8(10):3164 doi: 10.1007/s12274-015-0816-9
[64]
Wood G E, Marsden A J, Mudd J J, et al. van der Waals epitaxy of monolayer hexagonal boron nitride on copper foil:growth, crystallography and electronic band structure. 2D Mater, 2015, 2(2):025003 doi: 10.1088/2053-1583/2/2/025003
[65]
Li J D, Li Y, Yin J, et al. Growth of polar hexagonal boron nitride monolayer on nonpolar copper with unique orientation. Small, 2016, 12(27):3645 doi: 10.1002/smll.v12.27
[66]
Sutter P, Lahiri J, Albrecht P, et al. Chemical vapor deposition and etching of high-quality monolayer hexagonal boron nitride films. ACS Nano, 2011, 5(9):7303 doi: 10.1021/nn202141k
[67]
Wang L F, Wu B, Jiang L L, et al. Growth and etching of monolayer hexagonal boron nitride. Adv Mater, 2015, 27(330):4858 https://www.researchgate.net/publication/280118233_Growth_and_Etching_of_Monolayer_Hexagonal_Boron_Nitride
[68]
Sharma S, Kalita G, Vishwakarma R, et al. Opening of triangular hole in triangular-shaped chemical vapor deposited hexagonal boron nitride crystal. Sci Rep, 2015, 5:10426 doi: 10.1038/srep10426
[69]
Elbadawi C, Tran T T, Kolíbal M, et al. Electron beam directed etching of hexagonal boron nitride. Nanoscale, 2016, 8:16182 doi: 10.1039/C6NR04959A
[70]
Kan M, Zhou J, Wang Q, et al. Tuning the band gap and magnetic properties of BN sheets impregnated with graphene flakes. Phys Rev B, 2011, 84(20):205412 doi: 10.1103/PhysRevB.84.205412
[71]
Ci L J, Song L, Jin C H, et al. Atomic layers of hybridized boron nitride and graphene domains. Nat Mater, 2010, 9:430 doi: 10.1038/nmat2711
[72]
Levendorf M P, Kim C J, Brown L, et al. Graphene and boron nitride lateral heterostructures for atomically thin circuitry. Nature, 2012, 488:627 doi: 10.1038/nature11408
[73]
Liu Z, Ma L L, Shi G, et al. In-plane heterostructures of graphene and hexagonal boron nitride with controlled domain sizes. Nat Nanotechnol, 2013, 8:119 doi: 10.1038/nnano.2012.256
[74]
Liu L, Park J, Siegel D A, et al. Heteroepitaxial growth of twoDimensional Hexagonal boron nitride templated by graphene edges. Science, 2014, 343(6167):163 doi: 10.1126/science.1246137
[75]
Han G H, Rodríguez-Manzo J A, Lee C W, et al. Continuous growth of hexagonal graphene and boron nitride in-plane heterostructures by atmospheric pressure chemical vapor deposition. ACS Nano, 2013, 7(11):10129 doi: 10.1021/nn404331f
[76]
Sutter P, Cortes R, Lahiri J, et al. Interface formation in monolayer graphene-boron nitride heterostructures. Nano Lett, 2012, 12(9):4869 doi: 10.1021/nl302398m
[77]
Gao Y B, Zhang Y F, Chen P C, et al. Toward single-layer uniform hexagonal boron nitride-graphene patchworks with zigzag linking edge. Nano Lett, 2013, 13(7):3439 doi: 10.1021/nl4021123
[78]
Gao T, Song X J, Du H W, et al. Temperature-triggered chemical switching growth of in-plane and vertically stacked grapheneboron nitride heterostructures. Nat Commun, 2015, 6:6835 doi: 10.1038/ncomms7835
[79]
Ceballos F, Bellus M Z, Chiu H Y, et al. Ultrafast charge separation and indirect exciton formation in a MoS2-MoSe2 van der Waals heterostructure. ACS Nano, 2014, 8(12):12717 doi: 10.1021/nn505736z
[80]
Bellus M Z, Ceballos F, Chiu H Y, et al. Tightly bound trions in transition metal dichalcogenide heterostructures. ACS Nano, 2015, 9(6):6459 doi: 10.1021/acsnano.5b02144
[81]
Son M, Lim H, Hong M, et al. Direct growth of graphene pad on exfoliated hexagonal boron nitride surface. Nanoscale, 2011, 3:3089 doi: 10.1039/c1nr10504c
[82]
Tang S J, Ding G Q, Xie X M, et al. Nucleation and growth of single crystal graphene on hexagonal boron nitride. Carbon, 2011, 50(1):329 https://www.researchgate.net/publication/256677412_Nucleation_and_growth_of_single_crystal_graphene_on_hexagonal_boron_nitride
[83]
Tang S J, Wang H M, Zhang Y, et al. Precisely aligned graphene grown on hexagonal boron nitride by catalyst free chemical vapor deposition. Sci Rep, 2013, 3:2666 http://www.oalib.com/paper/3401588
[84]
Mishra N, Miseikis V, Convertino D, et al. Rapid and catalystfree van der Waals epitaxy of graphene on hexagonal boron nitride. Carbon, 2016, 96:497 doi: 10.1016/j.carbon.2015.09.100
[85]
Tang S J, Wang H M, Wang H S, et al. Silane-catalysed fast growth of large single-crystalline graphene on hexagonal boron nitride. Nat Commun, 2015, 6:6499 doi: 10.1038/ncomms7499
[86]
Kim S M, Hsu A, Araujo P T, et al. Synthesis of patched or stacked graphene and hBN flakes:a route to hybrid structure discovery. Nano Lett, 2013, 13(3):933 doi: 10.1021/nl303760m
[87]
Meng J H, Zhang X W, Wang H L, et al. Synthesis of in-plane and stacked graphene/hexagonal boron nitride heterostructures by combining with ion beam sputtering deposition and chemical vapor deposition. Nanoscale, 2015, 7:16046 doi: 10.1039/C5NR04490A
[88]
Gong Y J, Lei S D, Ye G L, et al. Two-step growth of twodimensional WSe2/MoSe2 heterostructures. Nano Lett, 2015, 15(9):6135 doi: 10.1021/acs.nanolett.5b02423
[89]
Zhang C H, Zhao S L, Jin C H, et al. Direct growth of large-area graphene and boron nitride heterostructures by a co-segregation method. Nat Commun, 2015, 6:6519 doi: 10.1038/ncomms7519
[90]
Song X J, Gao T, Nie Y F, et al. Seed-assisted growth of singlecrystalline patterned graphene domains on hexagonal boron nitride by chemical vapor deposition. Nano Lett, 2016, 16(10):6109 doi: 10.1021/acs.nanolett.6b02279
[91]
Zhang Y, Zhang Y F, Ji Q Q, et al. Controlled growth of highquality monolayer WS2 layers on sapphire and imaging its grain boundary. ACS Nano, 2013, 7(10):8963 doi: 10.1021/nn403454e
[92]
Zhan Y J, Liu Z, Najmaei S, et al. Large-area vapor-phase growth and characterization of MoS2 atomic layers on a SiO2 substrate. Small, 2012, 8(7):966 doi: 10.1002/smll.201102654
[93]
Wang X L, Gong Y J, Shi G, et al. Chemical vapor deposition growth of crystalline monolayer MoSe2. ACS Nano, 2014, 8(5):5125 doi: 10.1021/nn501175k
[94]
Cui X, Lee G H, Kim Y D, et al. Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform. Nat Nanotechnol, 2015, 10:534 doi: 10.1038/nnano.2015.70
[95]
Lee G H, Yu Y J, Cui X, et al. Flexible and transparent MoS2 field-effect transistors on hexagonal boron nitride-graphene heterostructures. ACS Nano, 2013, 7(9):7931 doi: 10.1021/nn402954e
[96]
Ross J S, Klement P, Jones A M, et al. Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p-n junctions. Nat Nanotechnol, 2014, 9:268 doi: 10.1038/nnano.2014.26
[97]
Okada M, Sawazaki T, Watanabe K, et al. Direct chemical vapor deposition growth of WS2 atomic layers on hexagonal boron nitride. ACS Nano, 2014, 8(8):8273 doi: 10.1021/nn503093k
[98]
Yan A, Velasco J Jr, Kahn S, et al. Direct growth of single- and few-layer MoS2 on h-BN with preferred relative rotation angles. Nano Lett, 2015, 15(10):6324 doi: 10.1021/acs.nanolett.5b01311
[99]
Wang S S, Wang X C, Warner J H. All chemical vapor deposition growth of MoS2:h-BN vertical van der Waals heterostructures. ACS Nano, 2015, 9(5):5246 doi: 10.1021/acsnano.5b00655
[100]
Fu L, Sun Y Y, Wu N, et al. Direct growth of MoS2/h-BN heterostructures via a sulfide-resistant alloy. ACS Nano, 2016, 10(2):2063 doi: 10.1021/acsnano.5b06254
[101]
Zhang M, Zhu Y M, Wang X S, et al. Controlled synthesis of ZrS2 monolayer and few layers on hexagonal boron nitride. Nat Nanotechnol, 2015, 10:534 doi: 10.1038/nnano.2015.70
[102]
Woods C R, Britnell L, Eckmann A, et al. Commensurateincommensurate transition in graphene on hexagonal boron nitride. Nat Phys, 2014, 10:451 doi: 10.1038/nphys2954
[103]
Park C H, Yang L, Son Y W, et al. New generation of massless Dirac fermions in graphene under external periodic potentials. Phys Rev Lett, 2008, 101(12):126804 doi: 10.1103/PhysRevLett.101.126804
[104]
Sui M Q, Chen G R, Ma L G, et al. Gate-tunable topological valley transport in bilayer graphene. Nat Phys, 2015, 11:1027 doi: 10.1038/nphys3485
[105]
Shi Z W, Jin C H, Yang W, et al. Gate-dependent pseudospin mixing in graphene/boron nitride moiré superlattices. Nat Phys, 2014, 10:743
[106]
Hunt B, Sanchez-Yamagishi J D, Young A F, et al. Massive Dirac Fermions and Hofstadter butterfly in a van der Waals heterostructures. Science, 2013, 340(6139):1427 doi: 10.1126/science.1237240
[107]
Yu G L, Gorbachev R V, Tu J S, et al. Hierarchy of Hofstadter states and replica quantum Hall ferromagnetism in graphene superlattices. Nat Phys, 2014, 10:525 doi: 10.1038/nphys2979
[108]
Xue J M, Yamagishi J S, Bulmash D, et al. Scanning tunnelling microscopy and spectroscopy of ultra-flat graphene on hexagonal boron nitride. Nat Mater, 2011, 10:282 doi: 10.1038/nmat2968
[109]
Petrone N, Chari T, Meric I, et al. Flexible graphene field-effect transistors encapsulated in hexagonal boron nitride. ACS Nano, 2015, 9(9):8953 doi: 10.1021/acsnano.5b02816
[110]
Iqbal M W, Iqbal M Z, Khan M F, et al. High-mobility and airstable single-layer WS2 field-effect transistors sandwiched between chemical vapor deposition-grown hexagonal BN films. Sci Rep, 2015, 5:10699 doi: 10.1038/srep10699
[111]
Lee G H, Yu Y J, Cui X, et, al. Flexible and transparent MoS2 field-effect transistors on hexagonal boron nitride-graphene heterostructures. ACS Nano, 2013, 7(9):7931 doi: 10.1021/nn402954e
[112]
Chan M Y, Komatsu K, Li S L, et, al. Suppression of thermally activated carrier transport in atomically thin MoS2 on crystalline hexagonal boron nitride substrates. Nanoscale, 2013, 5:9572 doi: 10.1039/c3nr03220e
[113]
Wang L, Chen Z, Dean C R, et al. Negligible environmental sensitivity of graphene in a hexagonal boron nitride/graphene/h-BN sandwich structure. ACS Nano, 2012, 6(10):9314 doi: 10.1021/nn304004s
[114]
Stolyarov M A, Liu G X, Rumyantsev S L, et al. Suppression of 1=f noise in near-ballistic h-BN-graphene-h-BN heterostructure field-effect transistors. Appl Phys Lett, 2015, 107(2):023106 doi: 10.1063/1.4926872
[115]
Britnell L, Gorbachev R V, Jalil R, et al. Electron tunneling through ultrathin boron nitride crystalline barriers. Nano Lett, 2012, 12(3):1707 doi: 10.1021/nl3002205
[116]
Lee S H, Choi M S, Lee J, et al. High performance vertical tunneling diodes using graphene/hexagonal boron nitride/graphene hetero-structure. Appl Phys Lett, 2014, 104(5):053103 doi: 10.1063/1.4863840
[117]
Nguyen V H, Mazzamuto F, Bournel A, et al. Resonant tunnelling diodes based on graphene/h-BN heterostructure. J Phys D, 2012, 45:325104 doi: 10.1088/0022-3727/45/32/325104
[118]
Gaskell J, Eaves L, Novoselov K S, et al. Graphene-hexagonal boron nitride resonant tunneling diodes as high-frequency oscillators. Appl Phys Lett, 2015, 107(10):103105 doi: 10.1063/1.4930230
[119]
Menga J H, Liua X, Zhang X W, et al. Interface engineering for highly efficient graphene-on-silicon Schottky junction solar cells by introducing a hexagonal boron nitride interlayer. Nano Energy, 2016, 28:44 doi: 10.1016/j.nanoen.2016.08.028
[120]
Woessner A, Lundeberg M B, Gao Y D, et al. Highly confined low-loss plasmons in graphene-boron nitride heterostructures. Nat Mater, 2015, 14:421 http://theory.physics.lehigh.edu/rotkin/Personal/plasmon-polariton/Hillenbrand_%20Highly%20confined%20low-loss%20plasmons%20in%20graphene%e2%80%93boron%20nitride%20heterostructures%20_nmat4169.pdf
[121]
Ma Q, Andersen T I, Nair N L, et al. Tuning ultrafast electron thermalization pathways in a van der Waals heterostructures. Nat Phys, 2016, 12:455 doi: 10.1038/nphys3620
[122]
Chen C C, Li Z, Shi L, et al. Thermoelectric transport across graphene/hexagonal boron nitride/graphene heterostructures. Nano Res, 2015, 8(2):666 doi: 10.1007/s12274-014-0550-8
[123]
Xu Y, Guo Z D, Chen H B, et al. In-plane and tunneling pressure sensors based on graphene/hexagonal boron nitride heterostructures. Appl Phys Lett, 2011, 99(13):133109 doi: 10.1063/1.3643899
[124]
Dauber J, Sagade A A, Oellers M, et al. Ultra-sensitive Hall sensors based on graphene encapsulated in hexagonal boron nitride. Appl Phys Lett, 2015, 106(19):193501 doi: 10.1063/1.4919897
[125]
Gopinadhan K, Shin Y J, Jalil R, et al. Extremely large magnetoresistance in few-layer graphene/boron-nitride heterostructures. Nat Commun, 2015, 6:8337 doi: 10.1038/ncomms9337
Fig. 1.  (Color online) (a) Schematic of the gas exfoliation of h-BN triggered by thermal expansion. (b) Characterization of exfoliated h-BN nanosheets: (i) SEM and (ii) TEM images after ten repeated cycles [28] .

Fig. 2.  (Color online) (a) (i) The decomposition process of ammonia borane in the two heating zones. (ii) and (iii) SEM images of fully covered h-BN on Cu (larger images) and transferred onto SiO2/Si (images inside) (ii) without BN nanoparticles and (iii) with many BN particles, grown for 1 h, respectively. (iv) Schematic diagram of the filtering system [41] . (b) The schematic diagram of hexagonal boron nitride (h-BN) LPCVD synthesis setup [39] .

Fig. 3.  (Color online) (a) Optical images of Cu foils prepared by (i) pristine, (ii) thermal annealing at 1020 ℃ for 2 h, and (iii) thermal annealing (1020 ℃ for 2 h)/chemical polishing. (iv) to (vi) are the corresponding optical images of transferred h-BN nanosheets transferred onto SiO2/Si substrates of (i) to (iii) [35] . (b) SEM image of triangular-shaped h-BN domains grown on Cu foil surface (i) without pre-annealing. (ii) Annealed for 3 h and (iii) 6 h, respectively [49] .

Fig. 4.  (Color online) (a) (i) Schematic drawing of the self-aligned process of h-BN domains on liquid Cu. (ii) SEM image of multiple circular h-BN domains and (iii) h-BN self-aligned single-crystals array with circular h-BN domains on the edges [52] . (b) (i) A photograph of wafer-scale EM-h-BN on sapphire substrate, (b) Atomic resolution scheme for R30° orientation. Red, green, salmon-color, and blue spheres stand for oxygen, aluminum, boron, and nitrogen elements [54] . (c) (i) CVD system setup for the growth of h-BN on SiO2/Si substrates. (ii) Schematic for the proposed growth mechanism, and (iii) the h-BN film on SiO2/Si of 1.5 × 1.5 cm2 area [40] .

Fig. 5.  (Color online) (a) Schematics of the catalyst system and SEM images of the surface after growth for 1 min (a, d, g, j) for Fe/SiO2(x)/Si substrates, where x = native, 200, 500, and 2000 nm, respectively. (b)(i) Schematic illustrating the salient stages of the CVD process. (ii) Schematic of the growth model for h-BN CVD on Fe/SiO2/Si substrates. (iii) Detail of the Ferich corner of the Fe-B-N ternary phase diagram in the isothermal section at 950 ℃ [55] . (c) (i)SEM images of h-BN grains grown on Cu foil for 10 min at 1050 ℃. (ii) to (iv) are SEM images of h-BN grains grown for 60 min on Cu-Ni alloy foils with (ii) 10 atom %, (iii) 20 atom % and (iv) 30 atom % Ni at 1050 ℃. The scale bars are 20 μm [56] .

Fig. 6.  (a) (i) Triangular structure with all sides with N-terminated edges and (ii) hexagonal structure with alternating N- and B-terminated edges [48] . (b) SEM images of the hBN crystals grown at different conditions. (i) APCVD experimental setup for hBN growth. (ii) SEM images of the hBN domains grown at 1065 ℃ using argon as a buffer gas. Sketch of the resulting hBN crystal shapes and corresponding termination-nitrogen (blue) and boron (red) [61] .

Fig. 7.  (Color online) (a) Atomic structure of monolayer h-BN on different orientations of copper surfaces (i) Cu(111), (ii) Cu(110), and (iii) Cu(100) [65] . (b) SEM images of h-BN triangles grown on (i) Cu(111), (ii) Cu(102), and( iii) Cu(103). Scalar bars in (i-iii) are 20 μm. (iv) Orientation statistics of the h-BN triangles grown on these three Cu facets. (c) Orientation-dependent stacking energies and the optimized structures based on DFT simulation. (i, iv, vii) Energy corrugations of h-BN rotating on Cu(102), Cu(103), and Cu(111), respectively. The optimized 60° stacking structures are shown for h-BN on (ii, iii) Cu(102), (v, vi) Cu(103), and 30° stacking structures for h-BN on (viii, ix) Cu(111). Nitrogen in blue, boron in pink, and copper in yellow. Top and second atom layers of Cu facets are highlighted by red and orange colors [66] .

Fig. 8.  (Color online) (a) Etching of h-BN crystals with formation of triangular etched holes on (i) grain boundary and (ii) crystal edge. (b) (i) Optical microscope image of a triangular shaped h-BN crystal with well-defined edge structure of etched triangular hole at the center. (ii) Schematic representation of atomic structure of a triangular h-BN crystal with zigzag N-terminated edges [69] .

Fig. 9.  (Color online) (a) (i) Illustration of epitaxial growth of BN onto graphene edges. (ii) SEM image of a hydrogen-etched graphene (Gr) island with equiangular hexagon etch holes. (iii) Nucleation of BN at graphene edges during initial growth. (iv) Formation of BN epistrips at graphene edges. (v) Continuous BN epistrips enclosing graphene islands. (vi) Full coverage of the etch holes in a graphene island by BN. (vii) Atomic-resolution STM image (3.5 nm by 2.5 nm) of a graphene-BN boundary [75]. (b) Graphene growth starts from seeds on the Cu foil (i) and hexagonal-BN grows continuously from the graphene template (left to right). Low (ii) and high (iii) magnification image for G-BN heterostructure on the Cu growth substrate that was oxidized. (iv) False color black, white, and brown regions indicate graphene, BN, and bare Cu regions in panel (iii), respectively. Scale bar in panel (ii) is 50 μm, and the scale bar in panel (iii) is 10 μm [76].

Fig. 10.  (Color online) (a) (i) Friction image of a graphene/h-BN heterostructure, (ii) zoomed in view in the black box in (i) with the scan angle 15° [84]. (b) Schematic of growth progress and AFM image of graphene showing aligned hexagonal grains [10] (the scale bars are 200 nm). (c) Schematic diagram of different types of orientation alignment [87]. (d) (i) Illustration of time-triggered selective growth of lateral and vertical epitaxy. SEM images of in-plane h-BN/graphene (ii) and stacked graphene/h-BN (iii). The scale bars in (ii) and (iii) are 2 μm. (iv, v) and (vi, vii) are AFM height images of h-BN/graphene and graphene/h-BN and extracted height histograms of the corresponding section. The scale bars in (iv) and (v) are 1 and 0.5 μm, separately. (viii, ix) SEM images of h-BN/graphene and graphene/h-BN structures. The scale bars are 10 and 5 μm, separately [79].

Fig. 11.  (Color online) (a) SEM image of triangular-shaped WS2 crystals grown onto an h-BN flake. (ii) Proposed structure model of WS2/h-BN, the bottom and top layers correspond to h-BN and WS2 [98]. (b) (i) Schematic of the synthesis process for heterostructures. (ii) SEM image of the directly grown single-crystal MoS2 on h-BN. Inset: MoS2 crystal with grain size up to 200 μm2; the scale bar is 5 μm. (iii) TEM characterizations of MoS2/h-BN heterostructures. SAED patterns corresponding to the heterostructures (inset); the scale bar is 0.2 nm. The spots in the green dashed hexagons indicate the (110) plane of MoS2, and the spots in the blue dashed hexagons indicate the (1010) plane of BN [101] .

Fig. 12.  (Color online) (a) A schematic illustration of the moiré pattern generated by lattice mismatch with zero rotation angle [10] . (b) Band structure along the ΓK and KM directions in reciprocal space, and total and projected densities of states DOSs for the relaxed structure of graphene on h-BN [9] . (c) Local resistance measured by conductive AFM for one of our graphene-on-h-BN samples with an 8 nm moiré pattern (i) and with a 14 nm moiré periodicity (ii). Young's modulus distribution, measured in the Peak Force mode, for structures with 8 (iii) and 14 nm (iv) moiré patterns, respectively. (v) and(vi)are cross-sections of the Young's modulus distribution taken along the dashed lines in (iii) and (iv), respectively. (vii) Ratio between FWHM of the peak in the Young's modulus distributionand the period of the moiré structure L. (viii) Young's modulus distribution across an unaligned sample. Scale bars for (i), (ii), (iii), (iv) and (viii) are 10 nm [103] .

Fig. 13.  (Color online) (a) (i) Theoretical local density of states curves for three different rotation angles between graphene and h-BN, red is $\phi$ =0.5° (12.5 nm), blue is $\phi $ =1° (10.0 nm) and green is $\phi $ =2° (6.3 nm). The curves have been vertically offset for clarity. (ii) Experimental dI/dV curves for two different moiré wavelengths, 9.0 nm (black) and 13.4 nm (red). The dips in the dI/dV curves are marked by arrows [12] . (b) (i) Resistance versus applied Vg at various T for monolayer graphene. (ii) Temperature dependence of the resistance at the DP and satellite peaks. Inset shows resistance versus natural logarithm of T [10] .

Fig. 14.  (Color online) (a) (i) Schematic drawing of the band structure in the graphene/h-BN heterostructures. (ii) Stacking of constant-energy maps of EDC curvature to show the conical dispersion at the two $\kappa $ points. (b) (i) to (iii) are ARPES data through the SDPs along different directions. The graphene and superlattice Brillouin zones are indicated by black dashed and red solid lines, respectively. The red dots represent the $\kappa $ points of the SBZ. (iv) to (vi) are EDCs between the momenta indicated in (i) to (iii). The EDCs across the SDPs are highlighted by red lines. (vii) to (ix) are fitting results of the EDCs across the SDPs in (i) to (iii) with two (vii, viii) or three (ix) Lorentzian peaks [11] .

Fig. 15.  (Color online) (a) Nontopological and topological Hall currents. (Left) Drifting cyclotron orbits give rise to Hall currents of the same sign for valleys K and $K'$ . (Right) Skewed motion induced by Berry curvature. (b) Nonlocal resistance in graphene superlattices (red curve) and longitudinal resistance (black curve) measured in G/hBN superlattices. (Top right inset) Optical micrograph of our typical G/hBN device and the nonlocal measurement geometry. Shown schematically are valley K and $K' $ currents and the long-range response mechanism. (Left inset) Schematic band structure of graphene superlattices, with Berry curvature hot spots arising near the gap opening and avoided band crossing regions. (Bottom right inset) Valley Hall conductivity modeled for gapped Dirac fermions as a function of carrier density [14] .

Fig. 16.  (Color online) (a) (i) Optical microscope image of the mechanically exfoliated monolayer graphene flake with h-BN underneath and gold electrodes contacting it above. The wiring of the STM tip and back gate voltage is indicated. STM topographic image of monolayer graphene (ii) on h-BN and (iii) on SiO2. (iv) Histogram of the height distributions for graphene on SiO2 (blue squares) and graphene on h-BN (red triangles) along with Gaussian fits [109] . (b) (i) Schematic of the h-BN-encapsulated MoS2 multi-terminal device. (ii) Optical microscope image of a fabricated device. Graphene contact regions are outlined by dashed lines. (iii) Cross-sectional STEM image of the fabricated device [95] . (c) (i) Schematic structure of graphene field-effect tunneling transistor. (ii) The corresponding band structure with finite Vg and Vb. (iii) Tunneling I-V's characteristics for a graphene-hBN device for different Vg (in 10-V steps) [6] . (d) Energy band diagrams of vertical n-graphene/h-BN/p-graphene device under zero, reverse and forward bias conditions [117] .

Fig. 17.  (Color online) (a) (i) J-V characteristics of the graphene/Si solar cells with (red) and without (black) an h-BN interlayer. (ii)(iii) Energy band diagrams of the Gr/SiSchottky junction solar cells (ii) without and (iii) with an h-BN electron blocking layer [120] . (b) (i) Schematic of a graphene/h-BN/graphene device under optical excitation. (ii) Schematic of intralayer thermalization and interlayer transport of the optically excited carriers. (iii) Band alignment between graphene and BN. (iv) Interlayer photocurrent as a function of $V_{\mathrm{b}}$ with and without light illumination [122].

[1]
Pakde A, Bando Y, Golberg D. Nano boron nitride flatland. Chem Soc Rev, 2014, 43:934 doi: 10.1039/C3CS60260E
[2]
Watanabe K, Taniguchi T, Kanda H. Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nat Mater, 2004, 3(6):404 doi: 10.1038/nmat1134
[3]
Wang H L, Zhang X W, Liu H, et al. Synthesis of large-sized single-crystal hexagonal boron nitride domains on nickel foils by ion beam sputtering deposition. Adv Mater, 2015, 27(48):8109 doi: 10.1002/adma.201504042
[4]
Ahmed K, Dahal R, Weltz A, et al. Growth of hexagonal boron nitride on (111) Si for deep UV photonics and thermal neutron detection. Appl Phys Lett, 2016, 109(11):113501 doi: 10.1063/1.4962831
[5]
Yin J, Li J D, Hang Y, et al. Boron nitride nanostructures:fabrication, functionalization and applications. Small, 2016, 12(22):2942 doi: 10.1002/smll.201600053
[6]
Britnell L, Gorbachev R V, Jalil R, et al. Field-effect tunneling transistor based on vertical graphene heterostructures. Science, 2012, 335(6071):947 doi: 10.1126/science.1218461
[7]
Dean C R, Young A F, Meric I, et al. Boron nitride substrates for high-quality graphene electronics. Nat Nanotechnol, 2010, 5:722 doi: 10.1038/nnano.2010.172
[8]
Li L K, Ye G J, Tran V, et al. Quantum oscillations in a twodimensional electron gas in black phosphorus thin films. Nat Nanotechnol, 2015, 10:608 doi: 10.1038/nnano.2015.91
[9]
Giovannetti G, Khomyakov P A, Brocks G, et al. Substrateinduced band gap in graphene on hexagonal boron nitride:ab initio density functional calculations. Phys Rev B, 2007, 76(7):073103 doi: 10.1103/PhysRevB.76.073103
[10]
Yang W, Chen G R, Shi Z W, et al. Epitaxial growth of singledomain graphene on hexagonal boron nitride. Nat Mater, 2013, 12:792 doi: 10.1038/nmat3695
[11]
Wang E, Lu X B, Ding S J, et al. Gaps induced by inversion symmetry breaking and second-generation Dirac cones in graphene/hexagonal boron nitride. Nat Phys, 2016, 12:1111 doi: 10.1038/nphys3856
[12]
Yankowitz M, Xue J M, Cormode D, et al. Emergence of superlattice Dirac points in graphene on hexagonal boron nitride. Nat Phys, 2012, 8:382 doi: 10.1038/nphys2272
[13]
Ponomarenko L A, Gorbachev R V, Yu G L, et al. Cloning of Dirac fermions in graphene superlattices. Nature, 2013, 497:594 doi: 10.1038/nature12187
[14]
Gorbachev R V, Song J C W, Yu G L, et al. Detecting topological currents in graphene superlattices. Science, 2014, 346(6208):448 doi: 10.1126/science.1254966
[15]
Novoselov K S, Jiang D, Schedin F, et al. Two-dimensional atomic crystals. Proc Natl Acad Sci USA, 2005, 102(30):10451 doi: 10.1073/pnas.0502848102
[16]
Pacilé D, Meyer J C, Girit Ç Ö, et al. The two-dimensional phase of boron nitride:few-atomic-layer sheets and suspended membranes. Appl Phys Lett, 2008, 92(13):133107 doi: 10.1063/1.2903702
[17]
Alem N, Erni R, Kisielowski C, et al. Atomically thin hexagonal boron nitride probed by ultrahigh-resolution transmission electron microscopy. Phys Rev B, 2009, 80(15):155425 doi: 10.1103/PhysRevB.80.155425
[18]
Jin C H, Lin F, Suenaga K, et al. Fabrication of a freestanding boron nitride single layer and its defect assignments. Phys Rev Lett, 2009, 102(19):195505 doi: 10.1103/PhysRevLett.102.195505
[19]
Lee C G, Li Q Y, Kalb W, et al. Frictional characteristics of atomically thin sheets. Science, 2010, 328(5974):76 doi: 10.1126/science.1184167
[20]
Gorbachev R V, Riaz I, Nair R R, et al. Hunting for monolayer boron nitride:optical and Raman signatures. Small, 2011, 7(4):465 doi: 10.1002/smll.201001628
[21]
Golberg D, Bando Y, Huang Y, et al. Boron nitride nanotubes and nanosheets. ACS Nano, 2010, 4(6):2979 doi: 10.1021/nn1006495
[22]
Zhi C Y, Bando Y, Tang C C, et al. Large-scale fabrication of boron nitride nanosheets and their utilization in polymeric composites with improved thermal and mechanical properties. Adv Mater, 2009, 21(28):2889 doi: 10.1002/adma.v21:28
[23]
Lin Y, Williams T V, Connell J W. Soluble, exfoliated hexagonal boron nitride nanosheets. J Phys Chem Lett, 2010, 1(1):277 doi: 10.1021/jz9002108
[24]
Wang Y, Shi Z X, Yin J. Boron nitride nanosheets:large-scale exfoliation in methanesulfonic acid and their composites with polybenzimidazole. J Mater Chem, 2011, 21:11371 doi: 10.1039/c1jm10342c
[25]
Lin Y, Williams T V, Xu T B, et al. Aqueous dispersions of fewlayered and monolayered hexagonal boron nitride nanosheets from sonication-assisted hydrolysis:critical role of water. J Phys Chem, 2011, 115:2679 doi: 10.1021/jp1105778
[26]
Zhou K G, Mao N N, Wang H X, et al. A mixed-solvent strategy for efficient exfoliation of inorganic graphene analogues. Angew Chem Int Edit, 2011, 50(46):10839 doi: 10.1002/anie.v50.46
[27]
Sarmazdeh Z R, Jafari S H, Ahmadi S J, et al. Large-scale exfoliation of hexagonal boron nitride with combined fast quenching and liquid exfoliation strategies. J Mater Sci, 2016, 51(6):3162 doi: 10.1007/s10853-015-9626-4
[28]
Zhu W S, Gao X, Li Q, et al. Controlled gas exfoliation of boron nitride into few-layered nanosheets. Angew Chem Int Edit, 2016, 128:10924 doi: 10.1002/ange.201605515
[29]
Nagashima A, Tejima N, Gamou Y, et al. Electronic dispersion relations of monolayer hexagonal boron nitride formed on the Ni(111) surface. Phys Rev B, 1995, 51(7):4606 doi: 10.1103/PhysRevB.51.4606
[30]
Koepke J C, Wood J D, Chen Y F, et al. Role of pressure in the growth of hexagonal boron nitride thin films from ammoniaborane. Chem Mater, 2016, 28(12):4169 doi: 10.1021/acs.chemmater.6b00396
[31]
Auwärter W, Suter H U, Sachdev H, et al. Synthesis of one monolayer of hexagonal boron nitride on Ni(111) from BTrichloroborazine (ClBNH)3. Chem Mater, 2004, 16(2):343 doi: 10.1021/cm034805s
[32]
Müller F, Stöwe K, Sachdev H. Symmetry versus commensurability:epitaxial growth of hexagonal boron nitride on Pt(111) from B-Trichloroborazine (ClBNH)3. Chem Mater, 2005, 17(13):3464 doi: 10.1021/cm048629e
[33]
Shi Y M, Hamsen C, Jia X T, et al. Synthesis of few-layer hexagonal boron nitride thin film by chemical vapor deposition. Nano Lett, 2010, 10(10):4134 doi: 10.1021/nl1023707
[34]
Song L, Ci L J, Lu H, et al. Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett, 2010, 10(8):3209 doi: 10.1021/nl1022139
[35]
Lee K H, Shin H J, Lee J, et al. Large-scale synthesis of high-quality hexagonal boron nitride nanosheets for large-area graphene electronics. Nano Lett, 2012, 12(1):714 doi: 10.1021/nl203635v
[36]
[37]
Ismach A, Chou H, Ferrer D A, et al. Toward the controlled synthesis of hexagonal boron nitride films. ACS Nano, 2012, 6(7):6378 doi: 10.1021/nn301940k
[38]
Chatterjee S, Luo Z T, Acerce M, et al. Chemical vapor deposition of boron nitride nanosheets on metallic substrates via decaborane/ammonia reactions. Chem Mater, 2011, 23(20):4414 doi: 10.1021/cm201955v
[39]
Kim K K, Hsu A, Jia X T, et al. Synthesis of monolayer hexagonal boron nitride on Cu foil using chemical vapor deposition. Nano Lett, 2012, 12(1):162 doi: 10.1021/nl203249a
[40]
Behura S J, Nguyen P, Che S W, et al. Large-area, transferfree, oxide-assisted synthesis of hexagonal boron nitride films and their heterostructures with MoS2 and WS2. J Am Chem Soc, 2015, 137(40):13060 doi: 10.1021/jacs.5b07739
[41]
Han J H, Lee J Y, Kwon H M, et al. Synthesis of waferscale hexagonal boron nitride monolayers free of aminoborane nanoparticles by chemical vapor deposition. Nanotechnology, 2014, 25(14):145604 doi: 10.1088/0957-4484/25/14/145604
[42]
Morsche M, Corso M, Greber T, et al. Formation of single layer h-BN on Pd(111). Surf Sci, 2006, 600(16):3280 doi: 10.1016/j.susc.2006.06.016
[43]
Müller F, Hüfner S, Sachdev H, et al. Epitaxial growth of hexagonal boron nitride on Ag(111). Phys Rev B, 2010, 82(11):113406 doi: 10.1103/PhysRevB.82.113406
[44]
Müller F, Hüfner S, Sachdev H. One-dimensional structure of boron nitride on chromium (110)-a study of the growth of boron nitride by chemical vapour deposition of borazine. Surf Sci, 2008, 602(22):3467 doi: 10.1016/j.susc.2008.06.037
[45]
Corso M, Greber T, Osterwalder J. H-BN on Pd(110):a tunable system for self-assembled nanostructures. Surf Sci, 2005, 577(2/3):78 https://www.researchgate.net/publication/239169796_H-BN_on_Pd1_1_0_A_tunable_system_for_self-assembled_nanostructures
[46]
Goriachko A, He Y B, Knapp M, et al. Self-assembly of a hexagonal boron nitride nanomesh on Ru(0001). Langmuir, 2007, 23:2928 doi: 10.1021/la062990t
[47]
Tay R Y, Griep M H, Mallick G, et al. Growth of large singlecrystalline two-dimensional boron nitride hexagons on electropolished copper. Nano Lett, 2014, 14(2):839 doi: 10.1021/nl404207f
[48]
Wang L F, Wu B, Chen J, et al. Monolayer hexagonal boron nitride films with large domain size and clean interface for enhancing the mobility of graphene-based field-effect transistors. Adv Mater, 2014, 26(10):1559 doi: 10.1002/adma.201304937
[49]
Wang J, Chen L F, Wu N, et al. Graphene on liquid metal by chemical vapour deposition at reduced temperature. Carbon, 2016, 96:799 doi: 10.1016/j.carbon.2015.10.015
[50]
Geng D C, Wu B, Guo Y L, et al. Uniform hexagonal graphene flakes and films grown on liquid copper surface. Proc Natl Acad Sci USA, 2012, 109(21):17992 https://www.researchgate.net/publication/224052905_Uniform_hexagonal_graphene_flakes_and_films_grown_on_liquid_copper_surface
[51]
Tan L F, Han J L, Mendes R G, et al. Self-aligned singlecrystalline hexagonal boron nitride arrays:toward higher integrated electronic devices. Adv Electron Mater, 2015, 1(11):1500223 doi: 10.1002/aelm.201500223
[52]
Khan M H, Huang Z G, Xiao F, et al. Synthesis of large and few atomic layers of hexagonal boron nitride on melted copper. Sci Rep, 2015, 5:7743 doi: 10.1038/srep07743
[53]
Jang A R, Hong S, Hyun C, et al. Wafer-scale and wrinkle-free epitaxial growth of single-orientated multilayer hexagonal boron nitride on sapphire. Nano Lett, 2016, 16(5):3360 doi: 10.1021/acs.nanolett.6b01051
[54]
Caneva S, Weatherup R S, Bayer B C, et al. Nucleation control for large, single crystalline domains of monolayer hexagonal boron nitride via Si-doped Fe catalysts. Nano Lett, 2015, 15(3):1867 doi: 10.1021/nl5046632
[55]
Lu G Y, Wu T R, Yuan Q H, et al. Synthesis of large singlecrystal hexagonal boron nitride grains on Cu-Ni alloy. Nat Commun, 2015, 6:6160 doi: 10.1038/ncomms7160
[56]
Li J, Wang X Y, Liu X R, et al. Facile growth of centimeter-sized single-crystal graphene on copper foil at atmospheric pressure. J Mater Chem C, 2015, 3:3530 doi: 10.1039/C5TC00235D
[57]
Guo W, Jing F, Xiao J, et al. Oxidative-etching-assisted synthesis of centimeter-sized single-crystalline graphene. Adv Mater, 2016, 28(16):3152 doi: 10.1002/adma.201503705
[58]
Tay R Y, Park H J, Ryu G H, et al. Synthesis of aligned symmetrical multifaceted monolayer hexagonal boron nitride single crystals on resolidified copper. Nanoscale, 2016, 8(4):2434 doi: 10.1039/C5NR08036C
[59]
Wu Q K, Park J H, Park S, et al. Single crystalline film of hexagonal boron nitride atomic monolayer by controlling nucleation seeds and domains. Sci Rep, 2015, 5:16159 doi: 10.1038/srep16159
[60]
Stehle Y, Meyerlll H M, Unocic R R, et al. Synthesis of hexagonal boron nitride monolayer:control of nucleation and crystal morphology. Chem Mater, 2015, 27(23):8041 doi: 10.1021/acs.chemmater.5b03607
[61]
Yin J, Yu J, Li X M, et al. Large single-crystal hexagonal boron nitride monolayer domains with controlled morphology and straight merging boundaries. Small, 2015, 11(35):4497 doi: 10.1002/smll.v11.35
[62]
Zhang Z H, Liu Y Y, Yang Y, et al. Growth mechanism and morphology of hexagonal boron nitride. Nano Lett, 2016, 16(2):1398 doi: 10.1021/acs.nanolett.5b04874
[63]
Song X J, Gao J F, Nie Y F, et al. Chemical vapor deposition growth of large-scale hexagonal boron nitride with controllable orientation. Nano Res, 2015, 8(10):3164 doi: 10.1007/s12274-015-0816-9
[64]
Wood G E, Marsden A J, Mudd J J, et al. van der Waals epitaxy of monolayer hexagonal boron nitride on copper foil:growth, crystallography and electronic band structure. 2D Mater, 2015, 2(2):025003 doi: 10.1088/2053-1583/2/2/025003
[65]
Li J D, Li Y, Yin J, et al. Growth of polar hexagonal boron nitride monolayer on nonpolar copper with unique orientation. Small, 2016, 12(27):3645 doi: 10.1002/smll.v12.27
[66]
Sutter P, Lahiri J, Albrecht P, et al. Chemical vapor deposition and etching of high-quality monolayer hexagonal boron nitride films. ACS Nano, 2011, 5(9):7303 doi: 10.1021/nn202141k
[67]
Wang L F, Wu B, Jiang L L, et al. Growth and etching of monolayer hexagonal boron nitride. Adv Mater, 2015, 27(330):4858 https://www.researchgate.net/publication/280118233_Growth_and_Etching_of_Monolayer_Hexagonal_Boron_Nitride
[68]
Sharma S, Kalita G, Vishwakarma R, et al. Opening of triangular hole in triangular-shaped chemical vapor deposited hexagonal boron nitride crystal. Sci Rep, 2015, 5:10426 doi: 10.1038/srep10426
[69]
Elbadawi C, Tran T T, Kolíbal M, et al. Electron beam directed etching of hexagonal boron nitride. Nanoscale, 2016, 8:16182 doi: 10.1039/C6NR04959A
[70]
Kan M, Zhou J, Wang Q, et al. Tuning the band gap and magnetic properties of BN sheets impregnated with graphene flakes. Phys Rev B, 2011, 84(20):205412 doi: 10.1103/PhysRevB.84.205412
[71]
Ci L J, Song L, Jin C H, et al. Atomic layers of hybridized boron nitride and graphene domains. Nat Mater, 2010, 9:430 doi: 10.1038/nmat2711
[72]
Levendorf M P, Kim C J, Brown L, et al. Graphene and boron nitride lateral heterostructures for atomically thin circuitry. Nature, 2012, 488:627 doi: 10.1038/nature11408
[73]
Liu Z, Ma L L, Shi G, et al. In-plane heterostructures of graphene and hexagonal boron nitride with controlled domain sizes. Nat Nanotechnol, 2013, 8:119 doi: 10.1038/nnano.2012.256
[74]
Liu L, Park J, Siegel D A, et al. Heteroepitaxial growth of twoDimensional Hexagonal boron nitride templated by graphene edges. Science, 2014, 343(6167):163 doi: 10.1126/science.1246137
[75]
Han G H, Rodríguez-Manzo J A, Lee C W, et al. Continuous growth of hexagonal graphene and boron nitride in-plane heterostructures by atmospheric pressure chemical vapor deposition. ACS Nano, 2013, 7(11):10129 doi: 10.1021/nn404331f
[76]
Sutter P, Cortes R, Lahiri J, et al. Interface formation in monolayer graphene-boron nitride heterostructures. Nano Lett, 2012, 12(9):4869 doi: 10.1021/nl302398m
[77]
Gao Y B, Zhang Y F, Chen P C, et al. Toward single-layer uniform hexagonal boron nitride-graphene patchworks with zigzag linking edge. Nano Lett, 2013, 13(7):3439 doi: 10.1021/nl4021123
[78]
Gao T, Song X J, Du H W, et al. Temperature-triggered chemical switching growth of in-plane and vertically stacked grapheneboron nitride heterostructures. Nat Commun, 2015, 6:6835 doi: 10.1038/ncomms7835
[79]
Ceballos F, Bellus M Z, Chiu H Y, et al. Ultrafast charge separation and indirect exciton formation in a MoS2-MoSe2 van der Waals heterostructure. ACS Nano, 2014, 8(12):12717 doi: 10.1021/nn505736z
[80]
Bellus M Z, Ceballos F, Chiu H Y, et al. Tightly bound trions in transition metal dichalcogenide heterostructures. ACS Nano, 2015, 9(6):6459 doi: 10.1021/acsnano.5b02144
[81]
Son M, Lim H, Hong M, et al. Direct growth of graphene pad on exfoliated hexagonal boron nitride surface. Nanoscale, 2011, 3:3089 doi: 10.1039/c1nr10504c
[82]
Tang S J, Ding G Q, Xie X M, et al. Nucleation and growth of single crystal graphene on hexagonal boron nitride. Carbon, 2011, 50(1):329 https://www.researchgate.net/publication/256677412_Nucleation_and_growth_of_single_crystal_graphene_on_hexagonal_boron_nitride
[83]
Tang S J, Wang H M, Zhang Y, et al. Precisely aligned graphene grown on hexagonal boron nitride by catalyst free chemical vapor deposition. Sci Rep, 2013, 3:2666 http://www.oalib.com/paper/3401588
[84]
Mishra N, Miseikis V, Convertino D, et al. Rapid and catalystfree van der Waals epitaxy of graphene on hexagonal boron nitride. Carbon, 2016, 96:497 doi: 10.1016/j.carbon.2015.09.100
[85]
Tang S J, Wang H M, Wang H S, et al. Silane-catalysed fast growth of large single-crystalline graphene on hexagonal boron nitride. Nat Commun, 2015, 6:6499 doi: 10.1038/ncomms7499
[86]
Kim S M, Hsu A, Araujo P T, et al. Synthesis of patched or stacked graphene and hBN flakes:a route to hybrid structure discovery. Nano Lett, 2013, 13(3):933 doi: 10.1021/nl303760m
[87]
Meng J H, Zhang X W, Wang H L, et al. Synthesis of in-plane and stacked graphene/hexagonal boron nitride heterostructures by combining with ion beam sputtering deposition and chemical vapor deposition. Nanoscale, 2015, 7:16046 doi: 10.1039/C5NR04490A
[88]
Gong Y J, Lei S D, Ye G L, et al. Two-step growth of twodimensional WSe2/MoSe2 heterostructures. Nano Lett, 2015, 15(9):6135 doi: 10.1021/acs.nanolett.5b02423
[89]
Zhang C H, Zhao S L, Jin C H, et al. Direct growth of large-area graphene and boron nitride heterostructures by a co-segregation method. Nat Commun, 2015, 6:6519 doi: 10.1038/ncomms7519
[90]
Song X J, Gao T, Nie Y F, et al. Seed-assisted growth of singlecrystalline patterned graphene domains on hexagonal boron nitride by chemical vapor deposition. Nano Lett, 2016, 16(10):6109 doi: 10.1021/acs.nanolett.6b02279
[91]
Zhang Y, Zhang Y F, Ji Q Q, et al. Controlled growth of highquality monolayer WS2 layers on sapphire and imaging its grain boundary. ACS Nano, 2013, 7(10):8963 doi: 10.1021/nn403454e
[92]
Zhan Y J, Liu Z, Najmaei S, et al. Large-area vapor-phase growth and characterization of MoS2 atomic layers on a SiO2 substrate. Small, 2012, 8(7):966 doi: 10.1002/smll.201102654
[93]
Wang X L, Gong Y J, Shi G, et al. Chemical vapor deposition growth of crystalline monolayer MoSe2. ACS Nano, 2014, 8(5):5125 doi: 10.1021/nn501175k
[94]
Cui X, Lee G H, Kim Y D, et al. Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform. Nat Nanotechnol, 2015, 10:534 doi: 10.1038/nnano.2015.70
[95]
Lee G H, Yu Y J, Cui X, et al. Flexible and transparent MoS2 field-effect transistors on hexagonal boron nitride-graphene heterostructures. ACS Nano, 2013, 7(9):7931 doi: 10.1021/nn402954e
[96]
Ross J S, Klement P, Jones A M, et al. Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p-n junctions. Nat Nanotechnol, 2014, 9:268 doi: 10.1038/nnano.2014.26
[97]
Okada M, Sawazaki T, Watanabe K, et al. Direct chemical vapor deposition growth of WS2 atomic layers on hexagonal boron nitride. ACS Nano, 2014, 8(8):8273 doi: 10.1021/nn503093k
[98]
Yan A, Velasco J Jr, Kahn S, et al. Direct growth of single- and few-layer MoS2 on h-BN with preferred relative rotation angles. Nano Lett, 2015, 15(10):6324 doi: 10.1021/acs.nanolett.5b01311
[99]
Wang S S, Wang X C, Warner J H. All chemical vapor deposition growth of MoS2:h-BN vertical van der Waals heterostructures. ACS Nano, 2015, 9(5):5246 doi: 10.1021/acsnano.5b00655
[100]
Fu L, Sun Y Y, Wu N, et al. Direct growth of MoS2/h-BN heterostructures via a sulfide-resistant alloy. ACS Nano, 2016, 10(2):2063 doi: 10.1021/acsnano.5b06254
[101]
Zhang M, Zhu Y M, Wang X S, et al. Controlled synthesis of ZrS2 monolayer and few layers on hexagonal boron nitride. Nat Nanotechnol, 2015, 10:534 doi: 10.1038/nnano.2015.70
[102]
Woods C R, Britnell L, Eckmann A, et al. Commensurateincommensurate transition in graphene on hexagonal boron nitride. Nat Phys, 2014, 10:451 doi: 10.1038/nphys2954
[103]
Park C H, Yang L, Son Y W, et al. New generation of massless Dirac fermions in graphene under external periodic potentials. Phys Rev Lett, 2008, 101(12):126804 doi: 10.1103/PhysRevLett.101.126804
[104]
Sui M Q, Chen G R, Ma L G, et al. Gate-tunable topological valley transport in bilayer graphene. Nat Phys, 2015, 11:1027 doi: 10.1038/nphys3485
[105]
Shi Z W, Jin C H, Yang W, et al. Gate-dependent pseudospin mixing in graphene/boron nitride moiré superlattices. Nat Phys, 2014, 10:743
[106]
Hunt B, Sanchez-Yamagishi J D, Young A F, et al. Massive Dirac Fermions and Hofstadter butterfly in a van der Waals heterostructures. Science, 2013, 340(6139):1427 doi: 10.1126/science.1237240
[107]
Yu G L, Gorbachev R V, Tu J S, et al. Hierarchy of Hofstadter states and replica quantum Hall ferromagnetism in graphene superlattices. Nat Phys, 2014, 10:525 doi: 10.1038/nphys2979
[108]
Xue J M, Yamagishi J S, Bulmash D, et al. Scanning tunnelling microscopy and spectroscopy of ultra-flat graphene on hexagonal boron nitride. Nat Mater, 2011, 10:282 doi: 10.1038/nmat2968
[109]
Petrone N, Chari T, Meric I, et al. Flexible graphene field-effect transistors encapsulated in hexagonal boron nitride. ACS Nano, 2015, 9(9):8953 doi: 10.1021/acsnano.5b02816
[110]
Iqbal M W, Iqbal M Z, Khan M F, et al. High-mobility and airstable single-layer WS2 field-effect transistors sandwiched between chemical vapor deposition-grown hexagonal BN films. Sci Rep, 2015, 5:10699 doi: 10.1038/srep10699
[111]
Lee G H, Yu Y J, Cui X, et, al. Flexible and transparent MoS2 field-effect transistors on hexagonal boron nitride-graphene heterostructures. ACS Nano, 2013, 7(9):7931 doi: 10.1021/nn402954e
[112]
Chan M Y, Komatsu K, Li S L, et, al. Suppression of thermally activated carrier transport in atomically thin MoS2 on crystalline hexagonal boron nitride substrates. Nanoscale, 2013, 5:9572 doi: 10.1039/c3nr03220e
[113]
Wang L, Chen Z, Dean C R, et al. Negligible environmental sensitivity of graphene in a hexagonal boron nitride/graphene/h-BN sandwich structure. ACS Nano, 2012, 6(10):9314 doi: 10.1021/nn304004s
[114]
Stolyarov M A, Liu G X, Rumyantsev S L, et al. Suppression of 1=f noise in near-ballistic h-BN-graphene-h-BN heterostructure field-effect transistors. Appl Phys Lett, 2015, 107(2):023106 doi: 10.1063/1.4926872
[115]
Britnell L, Gorbachev R V, Jalil R, et al. Electron tunneling through ultrathin boron nitride crystalline barriers. Nano Lett, 2012, 12(3):1707 doi: 10.1021/nl3002205
[116]
Lee S H, Choi M S, Lee J, et al. High performance vertical tunneling diodes using graphene/hexagonal boron nitride/graphene hetero-structure. Appl Phys Lett, 2014, 104(5):053103 doi: 10.1063/1.4863840
[117]
Nguyen V H, Mazzamuto F, Bournel A, et al. Resonant tunnelling diodes based on graphene/h-BN heterostructure. J Phys D, 2012, 45:325104 doi: 10.1088/0022-3727/45/32/325104
[118]
Gaskell J, Eaves L, Novoselov K S, et al. Graphene-hexagonal boron nitride resonant tunneling diodes as high-frequency oscillators. Appl Phys Lett, 2015, 107(10):103105 doi: 10.1063/1.4930230
[119]
Menga J H, Liua X, Zhang X W, et al. Interface engineering for highly efficient graphene-on-silicon Schottky junction solar cells by introducing a hexagonal boron nitride interlayer. Nano Energy, 2016, 28:44 doi: 10.1016/j.nanoen.2016.08.028
[120]
Woessner A, Lundeberg M B, Gao Y D, et al. Highly confined low-loss plasmons in graphene-boron nitride heterostructures. Nat Mater, 2015, 14:421 http://theory.physics.lehigh.edu/rotkin/Personal/plasmon-polariton/Hillenbrand_%20Highly%20confined%20low-loss%20plasmons%20in%20graphene%e2%80%93boron%20nitride%20heterostructures%20_nmat4169.pdf
[121]
Ma Q, Andersen T I, Nair N L, et al. Tuning ultrafast electron thermalization pathways in a van der Waals heterostructures. Nat Phys, 2016, 12:455 doi: 10.1038/nphys3620
[122]
Chen C C, Li Z, Shi L, et al. Thermoelectric transport across graphene/hexagonal boron nitride/graphene heterostructures. Nano Res, 2015, 8(2):666 doi: 10.1007/s12274-014-0550-8
[123]
Xu Y, Guo Z D, Chen H B, et al. In-plane and tunneling pressure sensors based on graphene/hexagonal boron nitride heterostructures. Appl Phys Lett, 2011, 99(13):133109 doi: 10.1063/1.3643899
[124]
Dauber J, Sagade A A, Oellers M, et al. Ultra-sensitive Hall sensors based on graphene encapsulated in hexagonal boron nitride. Appl Phys Lett, 2015, 106(19):193501 doi: 10.1063/1.4919897
[125]
Gopinadhan K, Shin Y J, Jalil R, et al. Extremely large magnetoresistance in few-layer graphene/boron-nitride heterostructures. Nat Commun, 2015, 6:8337 doi: 10.1038/ncomms9337
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 6257 Times PDF downloads: 75 Times Cited by: 0 Times

    History

    Received: 19 October 2016 Revised: 09 November 2016 Online: Published: 01 March 2017

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Huihui Yang, Feng Gao, Mingjin Dai, Dechang Jia, Yu Zhou, Ping'an Hu. Recent advances in preparation,properties and device applications of two-dimensional h-BN and its vertical heterostructures[J]. Journal of Semiconductors, 2017, 38(3): 031004. doi: 10.1088/1674-4926/38/3/031004 ****H H Yang, F Gao, M J Dai, D C Jia, Y Zhou, P A Hu. Recent advances in preparation,properties and device applications of two-dimensional h-BN and its vertical heterostructures[J]. J. Semicond., 2017, 38(3): 031004. doi:  10.1088/1674-4926/38/3/031004.
      Citation:
      Huihui Yang, Feng Gao, Mingjin Dai, Dechang Jia, Yu Zhou, Ping'an Hu. Recent advances in preparation,properties and device applications of two-dimensional h-BN and its vertical heterostructures[J]. Journal of Semiconductors, 2017, 38(3): 031004. doi: 10.1088/1674-4926/38/3/031004 ****
      H H Yang, F Gao, M J Dai, D C Jia, Y Zhou, P A Hu. Recent advances in preparation,properties and device applications of two-dimensional h-BN and its vertical heterostructures[J]. J. Semicond., 2017, 38(3): 031004. doi:  10.1088/1674-4926/38/3/031004.

      Recent advances in preparation,properties and device applications of two-dimensional h-BN and its vertical heterostructures

      doi: 10.1088/1674-4926/38/3/031004
      Funds:

      Project supported by the National Natural Science Foundation of China Nos.61390502,21373068

      Project supported by the National Natural Science Foundation of China (Nos.61390502,21373068),the National Basic Research Program of China (No.2013CB632900),the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (No.51521003),and the Self-Planned Task of State Key Laboratory of Robotics and System (No.SKLRS201607B)

      the National Basic Research Program of China No.2013CB632900

      and the Self-Planned Task of State Key Laboratory of Robotics and System No.SKLRS201607B

      the Foundation for Innovative Research Groups of the National Natural Science Foundation of China No.51521003

      More Information
      • Corresponding author: Pingan Hu,Email: hupa@hit.edu.cn
      • Received Date: 2016-10-19
      • Revised Date: 2016-11-09
      • Published Date: 2017-03-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return