Citation: |
Ce Huang, Yibo Jin, Weiyi Wang, Lei Tang, Chaoyu Song, Faxian Xiu. Manganese and chromium doping in atomically thin MoS2[J]. Journal of Semiconductors, 2017, 38(3): 033004. doi: 10.1088/1674-4926/38/3/033004
****
C Huang, Y B Jin, W Y Wang, L Tang, C Y Song, F X Xiu. Manganese and chromium doping in atomically thin MoS2[J]. J. Semicond., 2017, 38(3): 033004. doi: 10.1088/1674-4926/38/3/033004.
|
Manganese and chromium doping in atomically thin MoS2
doi: 10.1088/1674-4926/38/3/033004
More Information-
Abstract
Recently, two-dimensional materials have been attracting increasing attention because of their novel properties and promising applications. However, the impurity doping remains a significant challenge owing to the lack of the doping strategy in the atomically thin layers. Here we report on the chromium (Cr) and manganese (Mn) doping in atomically-thin MoS2 crystals grown by chemical vapor deposition. The Cr/Mn doped MoS2 samples are characterized by a peak at 1.76 and 1.79 eV in photoluminescence spectra, respectively, compared with the undoped one at 1.85 eV. The field-effect transistor (FET) devices based on the Mn doping show a higher threshold voltage than that of the pure MoS2 while the Cr doping exhibits the opposite behavior. Importantly, the carrier concentration in these samples displays a remarkable difference arising from the doping effect, consistent with the evolution of the FET performance. The temperature-dependent conductivity measurements further demonstrate a large variation in activation energy. The successful incorporation of the Mn and Cr impurities into the monolayer MoS2 paves the way towards the high Curie temperature two-dimensional dilute magnetic semiconductors. -
References
[1] Wang Q H, Kalantar-Zadeh K, Kis A, et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotechnol, 2012, 7:699 doi: 10.1038/nnano.2012.193[2] Radisavljevic B, Kis A. Mobility engineering and a metalinsulator transition in monolayer MoS2. Nat Mater, 2013, 12:815 doi: 10.1038/nmat3687[3] Roy K, Padmanabhan M, Goswami S, et al. Graphene-MoS2 hybrid structures for multifunctional photoresponsive memory devices. Nat Nanotechnol, 2013, 8:826 doi: 10.1038/nnano.2013.206[4] Yu W J, Liu Y, Zhou H L, et al. Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials. Nat Nanotechnol, 2013, 8:952 doi: 10.1038/nnano.2013.219[5] Zhang Y, Oka T, Suzuki R, et al. Electrically switchable chiral light-emitting transistor. Science, 344:725 doi: 10.1126/science.1251329[6] Woods C R, Britnell L, Eckmann A, et al. Commensurateincommensurate transition in graphene on hexagonal boron nitride. Nat Phys, 2014, 10:451 doi: 10.1038/nphys2954[7] Wu S F, Ross J S, Liu G B, et al. Electrical tuning of valley magnetic moment through symmetry control in bilayer MoS2. Nat Phys, 2013, 9:149 doi: 10.1038/nphys2524[8] Xu X, Yao W, Xiao D, et al. Spin and pseudospins in layered transition metal dichalcogenides. Nat Phys, 2014, 10:343 doi: 10.1038/nphys2942[9] Young A F, Dean C R, Wang L, et al. Spin and valley quantum Hall ferromagnetism in graphene. Nat Phys, 2012, 8:550 doi: 10.1038/nphys2307[10] Peng L L, Peng X, Liu B R, et al. Ultrathin two-dimensional TS2/graphene hybrid nanostructures for high-performance, flexible planar supercapacitors. Nano Lett, 2013, 13:2151 doi: 10.1021/nl400600x[11] Pu J, Yomogida Y, Liu K K, et al. Highly flexible MoS2 thin-film transistors with ion gel dielectrics. Nano Lett, 2012, 12:4013 doi: 10.1021/nl301335q[12] Yoon J, Park W, Bae G, et al. Highly flexible and transparent multilayer MoS2 transistors with graphene electrodes. Small, 2013, 9:3295 https://www.researchgate.net/publication/283168907_Flexible_Electronics_Highly_Flexible_and_Transparent_Multilayer_MoS2_Transistors_with_Graphene_Electrodes_Small_192013[13] Lee G H, Yu Y J, Cui X, et al. Flexible and transparent MoS2 field-effect transistors on hexagonal boron nitride-graphene heterostructures. ACS Nano, 2013, 7:7931 doi: 10.1021/nn402954e[14] Chang H Y, Yang S X, Lee J H, et al. High-performance, highly bendable MoS2 transistors with high-k dielectrics for flexible low-power systems. ACS Nano, 2013, 7:5446 doi: 10.1021/nn401429w[15] Mak K F, Lee C, Hone J, et al. Atomically thin MoS2:a new direct-gap semiconductor. Phys Rev Lett, 2010, 105:136805 doi: 10.1103/PhysRevLett.105.136805[16] Bromley R, Murray R, Yoffe A. The band structures of some transition metal dichalcogenides. Ⅲ. Group VIA:trigonal prism materials. J Phys C, 1972, 5:759 doi: 10.1088/0022-3719/5/7/007[17] Mattheiss L. Band structures of transition-metal-dichalcogenide layer compounds. Phys Rev B, 1973, 8:3719 doi: 10.1103/PhysRevB.8.3719[18] Coehoorn R, Haas C, Dijkstra J, et al. Electronic structure of MoSe2, MoS2, and WSe2. I. Band-structure calculations and photoelectron spectroscopy. Phys Rev B, 1987, 35:6195 doi: 10.1103/PhysRevB.35.6195[19] Böer T, Severin R, Müler A, et al. Band structure of MoS2, MoSe2, and α-MoTe2:angle-resolved photoelectron spectroscopy and ab initio calculations. Phys Rev B, 2001, 64:235305 doi: 10.1103/PhysRevB.64.235305[20] Ganatra R, Zhang Q. Few-layer MoS2:a promising layered semiconductor. ACS Nano, 2014, 8(5):4074 doi: 10.1021/nn405938z[21] Lebegue S, Eriksson O. Electronic structure of two-dimensional crystals from ab initio theory. Phys Rev B, 2009, 79:115409 doi: 10.1103/PhysRevB.79.115409[22] Kuc A, Zibouche N, Heine T. Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2. Phys Rev B, 2011, 83:245213 doi: 10.1103/PhysRevB.83.245213[23] Splendiani A, Sun L, Zhang Y B, et al. Emerging photoluminescence in monolayer MoS2. Nano Lett, 2010, 10:1271 doi: 10.1021/nl903868w[24] Schmidt H, Wang S F, Chu L Q, et al. Transport properties of monolayer MoS2 grown by chemical vapor deposition. Nano Lett, 2014, 14:1909 doi: 10.1021/nl4046922[25] Radisavljevic B, Radenovic A, Brivio J, et al. Single-layer MoS2 transistors. Nat Nanotechnol, 2011, 6:147 doi: 10.1038/nnano.2010.279[26] Lee Y H, Zhang X Q, Zhang W J, et al. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv Mater, 2012, 24:2320 doi: 10.1002/adma.201104798[27] Ling X, Lee Y H, Lin Y X, et al. Role of the seeding promoter in MoS2 growth by chemical vapor deposition. Nano Lett, 2014, 14:464 doi: 10.1021/nl4033704[28] Zhan Y, Liu Z, Najmaei S, Ajayan P M, et al. Large-area vaporphase growth and characterization of MoS2 atomic layers on a SiO2 substrate. Small, 2012, 8:966 doi: 10.1002/smll.201102654[29] Wang S Y, Ko T S, Huang C C, et al. Optical and electrical properties of MoS2 and Fe-doped MoS2. Jpn J Appl Phys, 2014, 53:04EH07[30] Li B, Huang L, Zhong M Z, et al. Synthesis and transport properties of large-scale alloy Co0.16Mo0.84S2 bilayer nanosheets. ACS Nano, 2015, 9:1257 doi: 10.1021/nn505048y[31] Laskar M R, Nath D N, Ma L, et al. p-type doping of MoS2 thin films using Nb. Appl Phys Lett, 2014, 104:092104 doi: 10.1063/1.4867197[32] Fang H, Tosun M, Seol G, et al. Degenerate n-doping of fewlayer transition metal dichalcogenides by potassium. Nano Lett, 2013, 13:1991 doi: 10.1021/nl400044m[33] Priour D Jr, Hwang E, Sarma S D. Quasi-two-dimensional diluted magnetic semiconductor systems. Phys Rev Lett, 2005, 95:037201 doi: 10.1103/PhysRevLett.95.037201[34] Meilikhov E, Farzetdinova R. Quasi-two-dimensional diluted magnetic semiconductors with arbitrary carrier degeneracy. Phys Rev B, 2006, 74:125204 doi: 10.1103/PhysRevB.74.125204[35] Mishra R, Zhou W, Pennycook S J, et al. Long-range ferromagnetic ordering in manganese-doped two-dimensional dichalcogenides. Phys Rev B, 2013, 88:44409 https://www.researchgate.net/publication/258781938_Long-range_ferromagnetic_ordering_in_manganese-doped_two-dimensional_dichalcogenides[36] Ramasubramaniam A, Naveh D. Mn-doped monolayer MoS2:an atomically thin dilute magnetic semiconductor. Phys Rev B, 2013, 87:195201 doi: 10.1103/PhysRevB.87.195201[37] Huang Z Y, Peng X Y, Yang H, et al. The structural, electronic and magnetic properties of bi-layered MoS2 with transition-metals doped in the interlayer. RSC Adv, 2013, 3:12939 doi: 10.1039/c3ra41490f[38] Qi J, Li X, Chen X, et al. Strain tuning of magnetism in Mn doped MoS2 monolayer. J Phys Condensed Matter, 2014, 26:256003 doi: 10.1088/0953-8984/26/25/256003[39] Dietl T. A ten-year perspective on dilute magnetic semiconductors and oxides. Nat Mater, 2010, 9:965 doi: 10.1038/nmat2898[40] Ohno H, Shen A, Matsukura F, et al. (Ga,Mn)As:a new diluted magnetic semiconductor based on GaAs. Appl Phys Lett, 1996, 69:363 doi: 10.1063/1.118061[41] Zhang K, Feng S M, Wang J J, et al. Manganese doping of monolayer MoS2:the substrate is critical. Nano Lett 2015, 15:6586 doi: 10.1021/acs.nanolett.5b02315[42] Mak K F, He K L, Lee C G, et al. Tightly bound trions in monolayer MoS2. Nat Mater, 2013, 12:207[43] Liu H, Neal A T, Ye P D. Channel length scaling of MoS2 MOSFETs. ACS Nano, 2012, 6:8563 doi: 10.1021/nn303513c[44] Mak K F, He K, Shan J, et al. Control of valley polarization in monolayer MoS2 by optical helicity. Nat Nanotechnol, 2012, 7:494 doi: 10.1038/nnano.2012.96[45] Zeng H, Dai J, Yao W, et al. Valley polarization in MoS2 monolayers by optical pumping. Nat Nanotechnol, 2012, 7:490 doi: 10.1038/nnano.2012.95[46] Wu S, Ross J S, Liu G B, et al. Electrical tuning of valley magnetic moment through symmetry control in bilayer MoS2. Nat Phys, 2013, 9:149 doi: 10.1038/nphys2524[47] Suzuki R, Sakano M, Zhang Y J, et al. Valley-dependent spin polarization in bulk MoS2 with broken inversion symmetry. Nat Nanotechnol, 2014, 9:611 doi: 10.1038/nnano.2014.148[48] Najmaei S, Liu Z, Zhou W, et al. Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. Nat Mater, 2014, 12:754 https://www.researchgate.net/profile/Zheng_Liu6/publication/255751114_nmat3673-s1/links/02e7e520a36f096cd5000000.pdf?inViewer=true&pdfJsDownload=true&disableCoverPage=true&origin=publication_detail[49] Mak K F, McGill K L, Park J, et al. The valley Hall effect in MoS2 transistors. Science, 2014, 344:1489 doi: 10.1126/science.1250140[50] Coehoorn R, Haas C, De Groot R. Electronic structure of MoSe2, MoS2, and WSe2. Ⅱ. The nature of the optical band gaps. Phys Rev B, 1987, 35:6203 doi: 10.1103/PhysRevB.35.6203[51] Wu M S, Xu B, Liu G, et al. First-principles study on the electronic structures of Cr-and W-doped single-layer MoS2. Acta Physica Sinica, 2013, 3:047[52] Andriotis A N, Menon M. Tunable magnetic properties of transition metal doped MoS2. Phys Rev B, 2014, 90:125304 doi: 10.1103/PhysRevB.90.125304[53] Conley H J, Wang B, Ziegler J I, et al. Bandgap engineering of strained monolayer and bilayer MoS2. Nano Lett, 2013, 13:3626 doi: 10.1021/nl4014748[54] Feng J, Qian X, Huang C W, et al. Strain-engineered artificial atom as a broad-spectrum solar energy funnel. Nat Photonics, 2012, 6:866 doi: 10.1038/nphoton.2012.285[55] Shi H, Pan H, Zhang Y W, et al. Quasiparticle band structures and optical properties of strained monolayer MoS2 and WS2. Phys Rev B, 2013, 87:155304 doi: 10.1103/PhysRevB.87.155304[56] Pan H, Zhang Y W. Tuning the electronic and magnetic properties of MoS2 nanoribbons by strain engineering. J Phys Chem C 2012, 116:11752 doi: 10.1021/jp3015782[57] Lu P, Wu X, Guo W, et al. Strain-dependent electronic and magnetic properties of MoS2 monolayer, bilayer, nanoribbons and nanotubes. Phys Chem Chem Phys, 2012, 14:13035 doi: 10.1039/c2cp42181j[58] Wang W Y, Liu Y W, Tang L, et al. Controllable Schottky barriers between MoS2 and permalloy. Sci Rep, 2014, 4:6928 doi: 10.1038/srep06928[59] Allain A, Kang J, Banerjee K, et al. Electrical contacts to twodimensional semiconductors. Nat Mater, 2015, 14:1195 doi: 10.1038/nmat4452[60] Fang F, Triebwasser S. Effect of surface scattering on electron mobility in an inversion layer on p-type silicon. Appl Phys Lett, 1964, 4:145 doi: 10.1063/1.1754005[61] Jariwala D, Sangwan V K, Late D J, et al. Band-like transport in high mobility unencapsulated single-layer MoS2 transistors. Appl Phys Lett, 2013, 102:173107 doi: 10.1063/1.4803920[62] Baugher B W, Churchill H O, Yang Y, et al. Intrinsic electronic transport properties of high-quality monolayer and bilayer MoS2. Nano Lett, 2013, 13:4212 doi: 10.1021/nl401916s[63] Komsa H P, Berseneva N, Krasheninnikov A V, et al. Charged point defects in the flatland:accurate formation energy calculations in two-dimensional materials. Phys Rev X, 2014, 4:031044 https://www.researchgate.net/publication/275323974_Charged_Point_Defects_in_the_Flatland_Accurate_Formation_Energy_Calculations_in_Two-Dimensional_Materials[64] Lee H S, Min S W, Chang Y G, et al. MoS2 Nanosheet phototransistors with thickness-modulated optical energy gap. Nano Lett, 2012, 12:3695 doi: 10.1021/nl301485q[65] Sze S M, Ng K K. Physics of semiconductor devices. John Wiley & Sons, 2006[66] Tian C, Chan S W. Electrical conductivities of (CeO2)1x-(Y2O3)x thin films. J Ame Ceramic Soc, 2002, 85:2222 doi: 10.1111/jace.2002.85.issue-9[67] Staebler D, Wronski C. Reversible conductivity changes in discharge-produced amorphous Si. Appl Phys Lett, 1977, 31:292 doi: 10.1063/1.89674[68] Ghatak S, Pal A N, Ghosh A. Nature of electronic states in atomically thin MoS2 field-effect transistors. ACS Nano, 2011, 5:7707 doi: 10.1021/nn202852j -
Proportional views