SEMICONDUCTOR MATERIALS

Progress of d0 magnetism in SiC

Yutian Wang, Chenguang Liu and Yuming Zhang

+ Author Affiliations

 Corresponding author: Yuming Zhang,Email:Zhangym@xidian.edu.cn

PDF

Abstract: The properties of defect-induced ferromagnetism (d0 magnetism) in SiC belong to carbon-based material which has been systematically investigated after graphite. In this paper, we reviewed our research progress about d0 magnetism in two aspects, i.e., magnetic source and magnetic coupling mechanism. The VSiVC divacancies have been evidenced as the probable source of d0 magnetism in SiC. To trace the ferromagnetic source in microscopic and electronic view, the p electrons of the nearest-neighbor carbon atoms, which are around the VSiVC divacancies, are sourced. For magnetic coupling mechanism, a higher divacancy concentration leads to stronger paramagnetic interaction but not stronger ferromagnetic coupling. So the d0 magnetism can probably be explained as a local effect which is incapable of scaling up with the volume.

Key words: SiCd0 magnetismgraphite



[1]
Dietl T, Ohno H, Matsukura F. Hole-mediated ferromagnetism in tetrahedrally coordinated semiconductors. Phys Rev B, 2001, 63(19):195205 doi: 10.1103/PhysRevB.63.195205
[2]
Pearton S J, Lee K P, Overberg M E, et al. Magnetism in SiC implanted with high doses of Fe and Mn. J Electron Mater, 2002, 31(5):336 doi: 10.1007/s11664-002-0078-7
[3]
Venkatesan M, Fitzgerald C B, Coey J M D. Unexpected magnetism in a dielectric oxide. Nature, 2004, 430(7000):630 doi: 10.1038/430630a
[4]
Khalid M, Esquinazi P, Spemann D, et al. Hydrogen-mediated ferromagnetism in ZnO single crystals. New J Phys, 2011, 13(6):063017 doi: 10.1088/1367-2630/13/6/063017
[5]
Esquinazi P, Spemann D, Höne R, et al. Induced magnetic ordering by proton irradiation in graphite. Phys Rev Lett, 2003, 91(22):227201 doi: 10.1103/PhysRevLett.91.227201
[6]
Makarova T L, Han K H, Esquinazi P, et al. Magnetism in photopolymerized fullerenes. Carbon, 2003, 41(8):1575 doi: 10.1016/S0008-6223(03)00082-4
[7]
Dubman M, Shiroka T, Luetkens H, et al. Low-energy and SQUID evidence of magnetism in highly oriented pyrolytic graphite. J Magn Magn Mater, 2010, 322(9-12):1228 doi: 10.1016/j.jmmm.2009.04.023
[8]
Hebard A F, Rairigh R P, Kelly J G, et al. Mining for high Tc ferromagnetism in ion-implanted dilute magnetic semiconductors. J Phys D, 2004, 37(4):511 doi: 10.1088/0022-3727/37/4/001
[9]
Ma S B, Sun Y P, Zhao B C, et al. Magnetic properties of Mndoped cubic silicon carbide. Physica B, 2007, 394(1):122 doi: 10.1016/j.physb.2007.02.028
[10]
Zhang X H, Han J C, Zhou J G, et al. Ferromagnetism in homogeneous (Al,Co)-codoped 4H-silicon carbides. J Magn Magn Mater, 2014, 363(4):34
[11]
Kang C, Cai H, Zhang X, T et al. The study of high Curie temperature ferromagnetism properties in Mn-doped SiC thin film. Results Phys, 2015, 5:178 doi: 10.1016/j.rinp.2015.07.003
[12]
Ofuchi H, Wang W H, Takano F, et al. Fluorescence EXAFS analysis of SiC:Mn films synthesized on SiC substrates. Hedman B, Painetta P, editor, X-Ray Absorption Fine Structure-XAFS13, Melville:Amer Inst Physics, 2007:443 http://www.slac.stanford.edu/econf/C060709/papers/129_TUPO104.PDF
[13]
Bouziane K, Al Azri M, Elzain M, et al. Mn fraction substitutional site and defects induced magnetism in Mn-implanted 6HSiC. J Alloys Compd, 2015, 632:760 doi: 10.1016/j.jallcom.2015.01.275
[14]
Song B, Chen X L, Han J C, et al. Structural and magnetic properties of (Al, Fe)-codoped SiC. J Phys D, 2010, 43(41):1655
[15]
Miranda P, Wahl U, Catarino N, et al. Damage formation and recovery in Fe implanted 6H-SiC. Nucl Instrum Methods Phys Res, 2012, 286(9):89 http://adsabs.harvard.edu/abs/2012NIMPB.286...89M
[16]
Wang Y, Li L, Prucnal S, et al. Disentangling defect-induced ferromagnetism in SiC. Phys Rev B, 2014, 89(1):014417 doi: 10.1103/PhysRevB.89.014417
[17]
Esquinazi P, Hohn R. Magnetism in carbon structures. J Magn Magn Mater, 2005, 290:20
[18]
Coey J M D. Ferromagnetism. Solid State Sci, 2005, 7(6):660 doi: 10.1016/j.solidstatesciences.2004.11.012
[19]
Ohldag H, Esquinazi P, Arenholz E, et al. The role of hydrogen in room-temperature ferromagnetism at graphite surfaces. New J Phys, 2010, 12(12):123012 doi: 10.1088/1367-2630/12/12/123012
[20]
Nair R R, Sepioni M, Tsai I L. Spin-half paramagnetism in graphene induced by point defects. Nat Phys, 2012, 8:3 http://adsabs.harvard.edu/abs/2012NatPh...8..199N
[21]
Spemann D, Esquinazi P, Setzer A, et al. Trace element content and magnetic properties of commercial HOPG samples studied by ion beam microscopy and SQUID magnetometry. AIP Adv, 2014, 4(10):074211
[22]
Pan H, Yi J B, Shen L, et al. Room-temperature ferromagnetism in carbon-doped ZnO. Phys Rev Lett, 2007, 99(12):127201 doi: 10.1103/PhysRevLett.99.127201
[23]
Yi J B, Lim C C, Xing G Z, et al. Ferromagnetism in dilute magnetic semiconductors through defect engineering:Li-doped ZnO. Phys Rev Lett, 2010, 104(13):137201 doi: 10.1103/PhysRevLett.104.137201
[24]
Mathew S, Gopinadhan K, Chan T K, et al. Magnetism in MoS2 induced by proton irradiation. Appl Phys Lett, 2012, 101(10):102103 doi: 10.1063/1.4750237
[25]
Yan G, Zhang F, Niu Y, et al. Chloride-based fast homoepitaxial growth of 4H-SiC films in a vertical hot-wall CVD. J Semicond, 2016, 37(6):063001 doi: 10.1088/1674-4926/37/6/063001
[26]
Jantawongrit P, Sanorpim S, Yaguchi H, et al. Microstructures of InN film on 4H-SiC (0001) substrate grown by RF-MBE. J Semicond, 2015, 36(8):37 http://adsabs.harvard.edu/abs/2015JSemi..36h3002J
[27]
Zhuo S Y, Liu X, Liu X, et al. Recent progress in research of fSiC codoped with N-B-Al pairs for optoelectronics. J Semicond, 2015, 36(8):083003 doi: 10.1088/1674-4926/36/8/083003
[28]
Jenny J R, Malta D P, Muller S G, et al. High-purity semiinsulating 4H-SiC for microwave device applications. J Electron Mater, 2003, 32(5):432 doi: 10.1007/s11664-003-0173-4
[29]
Liu Y, Wang G, Wang S, et al. Defect-induced magnetism in neutron irradiated 6H-SiC single crystals. Phys Rev Lett, 2011, 106(8):087205 doi: 10.1103/PhysRevLett.106.087205
[30]
Li L. Rise and fall of defect induced ferromagnetism in SiC single crystals. Appl Phys Lett, 2011, 98(22):222508 doi: 10.1063/1.3597629
[31]
Brauer G, Anwand W, Coleman P G, et al. Positron studies of defects in ion-implanted SiC. Phys Rev B, 1996, 54(5):3084 doi: 10.1103/PhysRevB.54.3084
[32]
Zhou R W, Liu X C, Zhuo S Y, et al. Divacancies induced ferromagnetism in 3C-SiC thin films. J Magn Magn Mater, 2015, 374:559 doi: 10.1016/j.jmmm.2014.08.081
[33]
Zhou R W, Liu X C, Li F, et al. Defects induced ferromagnetism in hydrogen irradiated 3C-SiC thin films. Mater Lett, 2015, 156:54 doi: 10.1016/j.matlet.2015.04.143
[34]
Son N T, Carlsson P, Ul Hassan J, et al. Defects and carrier compensation in semi-insulating 4H-SiC substrates. Phys Rev B, 2007, 75(15):155204 doi: 10.1103/PhysRevB.75.155204
[35]
Torpo L, Staab T E M, Nieminen R M. Divacancy in 3C- and 4H-SiC:an extremely stable defect. Phys Rev B, 2002, 65(8):5202 https://www.researchgate.net/publication/235584679_Divacancy_in_3C-and_4H-SiC_An_extremely_stable_defect
[36]
Gali A, Bockstedte M, Son N T, et al. Divacancy and its identification:theory. Devaty R P, editor, Silicon Carbide and Related Materials 2005, Pts 1 and 2, 2006:523
[37]
Zhu C Y, Ling C C, Brauer G, et al. Vacancy-type defects in 6H silicon carbide induced by He-implantation:a positron annihilation spectroscopy approach. J Phys D, 2008, 41(19):3080
[38]
Carlos W E, Garces N Y, Glaser E R, et al. Annealing of multivacancy defects in 4H-SiC. Phys Rev B, 2006, 74(23):235201 doi: 10.1103/PhysRevB.74.235201
[39]
Piamonteze C, Miedema P, De Groot F M F. Accuracy of the spin sum rule in XMCD for the transition-metal L edges from manganese to copper. Phys Rev B, 2009, 80(18):184410 doi: 10.1103/PhysRevB.80.184410
[40]
Schüz G, Wagner W, Wilhelm W, et al. Absorption of circularly polarized x rays in iron. Phys Rev Lett, 1987, 58(7):737 doi: 10.1103/PhysRevLett.58.737
[41]
Thole B T, Carra P, Sette F, et al. X-ray circular dichroism as a probe of orbital magnetization. Phys Rev Lett, 1992, 68(12):1943 doi: 10.1103/PhysRevLett.68.1943
[42]
Stohr J, Wu Y, Hermsmeier B D, et al. Element-specific mag netic microscopy with circularly polarized x-rays. Science, 1993, 259(259):658
[43]
Wang Y T, Liu Y, Wang G, et al. Carbon p electron ferromag netism in silicon carbide. Scientific Reports, 2015, 5:8999 doi: 10.1038/srep08999
[44]
Brüwiler P A, Maxwell A J, Puglia C, et al. π* and σ* excitons in C 1 s absorption of graphite. Phys Rev Lett, 1995, 74(4):614 doi: 10.1103/PhysRevLett.74.614
[45]
[46]
Heinisch H L, Greenwood L R, Weber W J, et al. Displacement damage in silicon carbide irradiated in fission reactors. J Nucl Mater, 2004, 327(2/3):175
[47]
Wang Y, Liu Y, Wendler E, et al. Defect-induced magnetism in SiC:interplay between ferromagnetism and paramagnetism. Phys Rev B, 2015, 92(17):174409 doi: 10.1103/PhysRevB.92.174409
[48]
He X J, Tan J, Zhang B L, et al. Irradiation-induced magnetic ordering in SiC:experimental results and a density functional study. Appl Phys Lett, 2013, 103(26):262409 doi: 10.1063/1.4860957
[49]
Zheng H W, Yan Y L, Lv Z C, et al. Room-temperature ferromag netism in Cu-implanted 6H-SiC single crystal. Appl Phys Lett, 2013, 102(14):142409 doi: 10.1063/1.4800562
[50]
Lv Z C, Ma X P, Zheng H W, et al. Room temperature ferromag netism induced by N-ion implantation in 6H-SiC single crystal. Mater Lett, 2013, 93:374 doi: 10.1016/j.matlet.2012.11.118
[51]
Xu B, Yin J, Xia Y D, et al. Ferromagnetic and antiferromagnetic properties of the semihydrogenated SiC sheet. Appl Phys Lett, 2010, 96(14):143111 doi: 10.1063/1.3379025
[52]
Zhang Y J, Qin H W, Cao E S, et al. Ferromagnetism induced by intrinsic defects and boron substitution in single-wall SiC nano tubes. J Phys Chem A, 2011, 115(35):9987 doi: 10.1021/jp109470r
[53]
G Mishra, S Mishra, S Prusty, et al. Magnetic properties of nanocrystalline beta-SiC. J Nanosci Nanotechnol, 2011, 11(6):5049 doi: 10.1166/jnn.2011.4109
Fig. 1.  (Color online) d0 magnetism in 6H SiC by neutron irradiation and the inset enlarges magnetic hysteresis loop of ferromagnetic sample, from Ref. [29]. For better understanding in black-and-white print, the arrow is added in the left side of the curves to show magnetic properties changing with fluences.

Fig. 2.  (Color online) The divacancy model: (a) divacancy in axial configuration, (C $_{\mathrm{3v}})$ and (b) divacancy in monoclinic configuration. ( Ref. [34]).

Fig. 3.  (Color online) X-ray absorption spectra (XAS) measured in electron yield (EY) mode for the sample 5E12 and the pristine sample: (a) XAS of the silicon K-edge at 77 K, (b) XMCD at the silicon K-edge at 77 K, (c) XAS of the carbon K-edge at 300 K, and (d) XMCD at the carbon K-edge at 300 K. (Ref. [43]). For better understanding in black-and-white print, the note is added at the corresponding curves.

Fig. 4.  (Color online) (a) Magnetization versus field tested at 300 K for all samples the diamagnetic background from the substrate has been subtracted, and the magnetization was calculated with implanted region of 460 nm thickness. The inset shows the magnetization tested for the pristine sample (black line) and sample 5E13 with the background of substrate. (b) XRD 2h/h scans of the pristine and Ne irradiated 6H-SiC measured in the vicinity of the (000 12) reflection. (c) Evolution of the Ms, the Si-sublattice disorder (RBS-C), and the maximum strain (XRD) with displacement per atom (DPA). The shadow area shows the DPA range for strong ferromagnetism. (Ref. [45])

Fig. 5.  (Color online) (a) Magnetization of all neutron irradiated samples recorded at 5 K as a function of field [M(H)]. (b) Brillouin function fitting for the sample at a 5 K M(H) and a fluence of 3.50 × 1019 cm-2 with different values of J (Ref. [47]). For better understanding in black-and-white print, the arrow is added in the right side of the curves to show the fitted J changing with fluences.

Fig. 6.  Magnetization versus field at the low field range for samples at temperatures of 5 K and 300 K with different fluences (a) 4.68 × 1017, (b) 3.50 × 1019 and (c) 3.50 × 1019cm-2. (Ref. [47])

Fig. 7.  The fitted paramagnetic centers N of all samples with different neutron fluences ( $\phi )$ and the ferromagnetic sample after annealing at 900 ℃ for 15 mins. The dashed line is used for indicating the trend. The shadow bars indicate the neutron-fluence range of all ferromagnetic samples with regard to N. (Ref. [47])

Fig. 8.  (a) Magnetization of pristine 6H-SiC at different temperatures. At 7 Tesla field and 4.2 K temperature, a deviation from the linear behavior indicates the presence of paramagnetism. Comparison of the hysteresis loops tested at 5 K for the pristine SiC and samples 1E14 and 5E13. (b) and (c) Magnetization at 5 K of sample 1E14 after subtracting diamagnetic contributions (DM) from the substrate DM, paramagnetic contribution PM from intrinsic defects, respectively. The implanted depth corresponds to around 0.1% of the sample thickness. (Ref. [16])

Fig. 9.  (a) ZFC/FC magnetization test of SiC samples irradiated by Ne ion with fluences of 5 × 1013 cm-2 (5E13) and 1 × 1014 cm-2 (1E14), respectively. The thermal irreversibility has been obviously observed for both samples. (b) Magnetic remanence of sample (1E14): the remanence curve can be disentangled by superparamagnetic contribution and ferromagnetic contribution. (Ref. [16])

Fig. 10.  (Color online) Left picture: the golden atom is Si atom and the gray atom is carbon atom. The frosted model means a divacancy. The red arrow is equal to spinpolarized moment of one divacancy. Thereby the left picture shows single spinpolarized divacancy and the right picture shows ferromagnetic coupling of two spinpolarized divacancies.

Table 1.   Fitting results for magnetic samples 1E14 and 5E13 using Eq.(2).

SampleTcMs(0)nμ
1js-38-3-033006000762 K 3.6 × 1019μ/g 4.1 × 1014/g8.1 × 104μ
5js-38-3-03300600750 K 1.3 × 1019μ/g5.3 × 1014/g4.5 × 104μ
DownLoad: CSV
[1]
Dietl T, Ohno H, Matsukura F. Hole-mediated ferromagnetism in tetrahedrally coordinated semiconductors. Phys Rev B, 2001, 63(19):195205 doi: 10.1103/PhysRevB.63.195205
[2]
Pearton S J, Lee K P, Overberg M E, et al. Magnetism in SiC implanted with high doses of Fe and Mn. J Electron Mater, 2002, 31(5):336 doi: 10.1007/s11664-002-0078-7
[3]
Venkatesan M, Fitzgerald C B, Coey J M D. Unexpected magnetism in a dielectric oxide. Nature, 2004, 430(7000):630 doi: 10.1038/430630a
[4]
Khalid M, Esquinazi P, Spemann D, et al. Hydrogen-mediated ferromagnetism in ZnO single crystals. New J Phys, 2011, 13(6):063017 doi: 10.1088/1367-2630/13/6/063017
[5]
Esquinazi P, Spemann D, Höne R, et al. Induced magnetic ordering by proton irradiation in graphite. Phys Rev Lett, 2003, 91(22):227201 doi: 10.1103/PhysRevLett.91.227201
[6]
Makarova T L, Han K H, Esquinazi P, et al. Magnetism in photopolymerized fullerenes. Carbon, 2003, 41(8):1575 doi: 10.1016/S0008-6223(03)00082-4
[7]
Dubman M, Shiroka T, Luetkens H, et al. Low-energy and SQUID evidence of magnetism in highly oriented pyrolytic graphite. J Magn Magn Mater, 2010, 322(9-12):1228 doi: 10.1016/j.jmmm.2009.04.023
[8]
Hebard A F, Rairigh R P, Kelly J G, et al. Mining for high Tc ferromagnetism in ion-implanted dilute magnetic semiconductors. J Phys D, 2004, 37(4):511 doi: 10.1088/0022-3727/37/4/001
[9]
Ma S B, Sun Y P, Zhao B C, et al. Magnetic properties of Mndoped cubic silicon carbide. Physica B, 2007, 394(1):122 doi: 10.1016/j.physb.2007.02.028
[10]
Zhang X H, Han J C, Zhou J G, et al. Ferromagnetism in homogeneous (Al,Co)-codoped 4H-silicon carbides. J Magn Magn Mater, 2014, 363(4):34
[11]
Kang C, Cai H, Zhang X, T et al. The study of high Curie temperature ferromagnetism properties in Mn-doped SiC thin film. Results Phys, 2015, 5:178 doi: 10.1016/j.rinp.2015.07.003
[12]
Ofuchi H, Wang W H, Takano F, et al. Fluorescence EXAFS analysis of SiC:Mn films synthesized on SiC substrates. Hedman B, Painetta P, editor, X-Ray Absorption Fine Structure-XAFS13, Melville:Amer Inst Physics, 2007:443 http://www.slac.stanford.edu/econf/C060709/papers/129_TUPO104.PDF
[13]
Bouziane K, Al Azri M, Elzain M, et al. Mn fraction substitutional site and defects induced magnetism in Mn-implanted 6HSiC. J Alloys Compd, 2015, 632:760 doi: 10.1016/j.jallcom.2015.01.275
[14]
Song B, Chen X L, Han J C, et al. Structural and magnetic properties of (Al, Fe)-codoped SiC. J Phys D, 2010, 43(41):1655
[15]
Miranda P, Wahl U, Catarino N, et al. Damage formation and recovery in Fe implanted 6H-SiC. Nucl Instrum Methods Phys Res, 2012, 286(9):89 http://adsabs.harvard.edu/abs/2012NIMPB.286...89M
[16]
Wang Y, Li L, Prucnal S, et al. Disentangling defect-induced ferromagnetism in SiC. Phys Rev B, 2014, 89(1):014417 doi: 10.1103/PhysRevB.89.014417
[17]
Esquinazi P, Hohn R. Magnetism in carbon structures. J Magn Magn Mater, 2005, 290:20
[18]
Coey J M D. Ferromagnetism. Solid State Sci, 2005, 7(6):660 doi: 10.1016/j.solidstatesciences.2004.11.012
[19]
Ohldag H, Esquinazi P, Arenholz E, et al. The role of hydrogen in room-temperature ferromagnetism at graphite surfaces. New J Phys, 2010, 12(12):123012 doi: 10.1088/1367-2630/12/12/123012
[20]
Nair R R, Sepioni M, Tsai I L. Spin-half paramagnetism in graphene induced by point defects. Nat Phys, 2012, 8:3 http://adsabs.harvard.edu/abs/2012NatPh...8..199N
[21]
Spemann D, Esquinazi P, Setzer A, et al. Trace element content and magnetic properties of commercial HOPG samples studied by ion beam microscopy and SQUID magnetometry. AIP Adv, 2014, 4(10):074211
[22]
Pan H, Yi J B, Shen L, et al. Room-temperature ferromagnetism in carbon-doped ZnO. Phys Rev Lett, 2007, 99(12):127201 doi: 10.1103/PhysRevLett.99.127201
[23]
Yi J B, Lim C C, Xing G Z, et al. Ferromagnetism in dilute magnetic semiconductors through defect engineering:Li-doped ZnO. Phys Rev Lett, 2010, 104(13):137201 doi: 10.1103/PhysRevLett.104.137201
[24]
Mathew S, Gopinadhan K, Chan T K, et al. Magnetism in MoS2 induced by proton irradiation. Appl Phys Lett, 2012, 101(10):102103 doi: 10.1063/1.4750237
[25]
Yan G, Zhang F, Niu Y, et al. Chloride-based fast homoepitaxial growth of 4H-SiC films in a vertical hot-wall CVD. J Semicond, 2016, 37(6):063001 doi: 10.1088/1674-4926/37/6/063001
[26]
Jantawongrit P, Sanorpim S, Yaguchi H, et al. Microstructures of InN film on 4H-SiC (0001) substrate grown by RF-MBE. J Semicond, 2015, 36(8):37 http://adsabs.harvard.edu/abs/2015JSemi..36h3002J
[27]
Zhuo S Y, Liu X, Liu X, et al. Recent progress in research of fSiC codoped with N-B-Al pairs for optoelectronics. J Semicond, 2015, 36(8):083003 doi: 10.1088/1674-4926/36/8/083003
[28]
Jenny J R, Malta D P, Muller S G, et al. High-purity semiinsulating 4H-SiC for microwave device applications. J Electron Mater, 2003, 32(5):432 doi: 10.1007/s11664-003-0173-4
[29]
Liu Y, Wang G, Wang S, et al. Defect-induced magnetism in neutron irradiated 6H-SiC single crystals. Phys Rev Lett, 2011, 106(8):087205 doi: 10.1103/PhysRevLett.106.087205
[30]
Li L. Rise and fall of defect induced ferromagnetism in SiC single crystals. Appl Phys Lett, 2011, 98(22):222508 doi: 10.1063/1.3597629
[31]
Brauer G, Anwand W, Coleman P G, et al. Positron studies of defects in ion-implanted SiC. Phys Rev B, 1996, 54(5):3084 doi: 10.1103/PhysRevB.54.3084
[32]
Zhou R W, Liu X C, Zhuo S Y, et al. Divacancies induced ferromagnetism in 3C-SiC thin films. J Magn Magn Mater, 2015, 374:559 doi: 10.1016/j.jmmm.2014.08.081
[33]
Zhou R W, Liu X C, Li F, et al. Defects induced ferromagnetism in hydrogen irradiated 3C-SiC thin films. Mater Lett, 2015, 156:54 doi: 10.1016/j.matlet.2015.04.143
[34]
Son N T, Carlsson P, Ul Hassan J, et al. Defects and carrier compensation in semi-insulating 4H-SiC substrates. Phys Rev B, 2007, 75(15):155204 doi: 10.1103/PhysRevB.75.155204
[35]
Torpo L, Staab T E M, Nieminen R M. Divacancy in 3C- and 4H-SiC:an extremely stable defect. Phys Rev B, 2002, 65(8):5202 https://www.researchgate.net/publication/235584679_Divacancy_in_3C-and_4H-SiC_An_extremely_stable_defect
[36]
Gali A, Bockstedte M, Son N T, et al. Divacancy and its identification:theory. Devaty R P, editor, Silicon Carbide and Related Materials 2005, Pts 1 and 2, 2006:523
[37]
Zhu C Y, Ling C C, Brauer G, et al. Vacancy-type defects in 6H silicon carbide induced by He-implantation:a positron annihilation spectroscopy approach. J Phys D, 2008, 41(19):3080
[38]
Carlos W E, Garces N Y, Glaser E R, et al. Annealing of multivacancy defects in 4H-SiC. Phys Rev B, 2006, 74(23):235201 doi: 10.1103/PhysRevB.74.235201
[39]
Piamonteze C, Miedema P, De Groot F M F. Accuracy of the spin sum rule in XMCD for the transition-metal L edges from manganese to copper. Phys Rev B, 2009, 80(18):184410 doi: 10.1103/PhysRevB.80.184410
[40]
Schüz G, Wagner W, Wilhelm W, et al. Absorption of circularly polarized x rays in iron. Phys Rev Lett, 1987, 58(7):737 doi: 10.1103/PhysRevLett.58.737
[41]
Thole B T, Carra P, Sette F, et al. X-ray circular dichroism as a probe of orbital magnetization. Phys Rev Lett, 1992, 68(12):1943 doi: 10.1103/PhysRevLett.68.1943
[42]
Stohr J, Wu Y, Hermsmeier B D, et al. Element-specific mag netic microscopy with circularly polarized x-rays. Science, 1993, 259(259):658
[43]
Wang Y T, Liu Y, Wang G, et al. Carbon p electron ferromag netism in silicon carbide. Scientific Reports, 2015, 5:8999 doi: 10.1038/srep08999
[44]
Brüwiler P A, Maxwell A J, Puglia C, et al. π* and σ* excitons in C 1 s absorption of graphite. Phys Rev Lett, 1995, 74(4):614 doi: 10.1103/PhysRevLett.74.614
[45]
[46]
Heinisch H L, Greenwood L R, Weber W J, et al. Displacement damage in silicon carbide irradiated in fission reactors. J Nucl Mater, 2004, 327(2/3):175
[47]
Wang Y, Liu Y, Wendler E, et al. Defect-induced magnetism in SiC:interplay between ferromagnetism and paramagnetism. Phys Rev B, 2015, 92(17):174409 doi: 10.1103/PhysRevB.92.174409
[48]
He X J, Tan J, Zhang B L, et al. Irradiation-induced magnetic ordering in SiC:experimental results and a density functional study. Appl Phys Lett, 2013, 103(26):262409 doi: 10.1063/1.4860957
[49]
Zheng H W, Yan Y L, Lv Z C, et al. Room-temperature ferromag netism in Cu-implanted 6H-SiC single crystal. Appl Phys Lett, 2013, 102(14):142409 doi: 10.1063/1.4800562
[50]
Lv Z C, Ma X P, Zheng H W, et al. Room temperature ferromag netism induced by N-ion implantation in 6H-SiC single crystal. Mater Lett, 2013, 93:374 doi: 10.1016/j.matlet.2012.11.118
[51]
Xu B, Yin J, Xia Y D, et al. Ferromagnetic and antiferromagnetic properties of the semihydrogenated SiC sheet. Appl Phys Lett, 2010, 96(14):143111 doi: 10.1063/1.3379025
[52]
Zhang Y J, Qin H W, Cao E S, et al. Ferromagnetism induced by intrinsic defects and boron substitution in single-wall SiC nano tubes. J Phys Chem A, 2011, 115(35):9987 doi: 10.1021/jp109470r
[53]
G Mishra, S Mishra, S Prusty, et al. Magnetic properties of nanocrystalline beta-SiC. J Nanosci Nanotechnol, 2011, 11(6):5049 doi: 10.1166/jnn.2011.4109
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3629 Times PDF downloads: 28 Times Cited by: 0 Times

    History

    Received: 08 June 2016 Revised: 19 September 2016 Online: Published: 01 March 2017

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Yutian Wang, Chenguang Liu, Yuming Zhang. Progress of d0 magnetism in SiC[J]. Journal of Semiconductors, 2017, 38(3): 033006. doi: 10.1088/1674-4926/38/3/033006 ****Y T Wang, C G Liu, Y M Zhang. Progress of d0 magnetism in SiC[J]. J. Semicond., 2017, 38(3): 033006. doi: 10.1088/1674-4926/38/3/033006.
      Citation:
      Yutian Wang, Chenguang Liu, Yuming Zhang. Progress of d0 magnetism in SiC[J]. Journal of Semiconductors, 2017, 38(3): 033006. doi: 10.1088/1674-4926/38/3/033006 ****
      Y T Wang, C G Liu, Y M Zhang. Progress of d0 magnetism in SiC[J]. J. Semicond., 2017, 38(3): 033006. doi: 10.1088/1674-4926/38/3/033006.

      Progress of d0 magnetism in SiC

      doi: 10.1088/1674-4926/38/3/033006
      Funds:

      Project supported by the Department of Science and Technology,Govt of India (No.DST/TMC/SERI/FR/90)

      Project supported by the Department of Science and Technology,Govt of India No.DST/TMC/SERI/FR/90

      More Information
      • Corresponding author: Yuming Zhang,Email:Zhangym@xidian.edu.cn
      • Received Date: 2016-06-08
      • Revised Date: 2016-09-19
      • Published Date: 2017-03-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return