Citation: |
Xudong Chen, Wenbo Zhai, Jingwen Zhang, Renan Bu, Hongxing Wang, Xun Hou. FEM thermal analysis of high power GaN-on-diamond HEMTs[J]. Journal of Semiconductors, 2018, 39(10): 104005. doi: 10.1088/1674-4926/39/10/104005
****
X D Chen, W B Zhai, J W Zhang, R N Bu, H X Wang, X Hou, FEM thermal analysis of high power GaN-on-diamond HEMTs[J]. J. Semicond., 2018, 39(10): 104005. doi: 10.1088/1674-4926/39/10/104005.
|
FEM thermal analysis of high power GaN-on-diamond HEMTs
doi: 10.1088/1674-4926/39/10/104005
More Information-
Abstract
A three-dimensional thermal analysis of GaN HEMTs on diamond substrate is investigated using the finite element method. The diamond substrate thickness, area and shape, transition layer thickness and thermal conductivity of the transition layer are considered and treated appropriately in the numerical simulation. The temperature distribution and heat spreading paths are investigated under different conditions and the results indicate that the existence of the transition layer causes an increase in the channel temperature and the thickness, area and shape of the diamond substrate have certain impacts on the channel temperature too. Channel temperature reduces with increasing diamond substrate thickness and area but with a decreasing trend, which can be explained by the saturation effects of the diamond substrate. The shape of diamond substrate also affects the temperature performance of GaN HEMTs, therefore, to achieve a favorable heat dissipation effect with the settled diamond substrate area, the shape should contain as many isothermal curves as possible when the isothermal gradient is constant. The study of the thermal properties of GaN on diamond substrate is useful for the prediction of heating of high power GaN HEMTs devices and optimal designs of an efficient heat spreader for GaN HEMTs.-
Keywords:
- FEM,
- GaN-on-diamond HEMTs,
- self-heating,
- temperature distribution
-
References
[1] Jimenez J L, Chowdhury U. X-band GaN FET reliability. Proc IEEE IRPS, 2008: 429[2] Lee S, Vetury R, Brown J D, et al. Reliability assessment of AlGaN/GaN HEMT technology on SiC for 48 V applications. Proc IEEE 46th Annu Int Rel Phys Symp, 2008: 446[3] Singhal S, Roberts J C, Rajagopal P, et al. GaN-on-Si failure mechanisms and reliability improvements. Proc IEEE IRPS, 2006: 95[4] Kemerley R T, Wallace H B, Yoder M N. Impact of wide bandgap microwave devices on DoD systems. Proc IEEE, 2002, 90(6): 1059 doi: 10.1109/JPROC.2002.1021570[5] Mishra U K, Parikh P, Wu Y F. AlGaN/GaN HEMTs-an overview of device operation and applications. Proc IEEE, 2002, 90(11): 1022[6] Sullivan G J, Chen M Y, Higgins J A, et al. High-power 10-GHz operation of AlGaN HFET's on insulating SiC. IEEE Electron Device Lett, 1998, 19(6): 198 doi: 10.1109/55.678543[7] Trew R J. SiC and GaN transistors-is there one winner for microwave power applications. Proc IEEE, 2002, 90(6): 1032 doi: 10.1109/JPROC.2002.1021568[8] Menozzi R, Umana-Membreno G A, Nener B D, et al. Temperature-dependent characterization of AlGaN/GaN HEMTs: thermal and source/drain resistances. IEEE Trans Device Mater Rel, 2008, 8(2): 255 doi: 10.1109/TDMR.2008.918960[9] Bar-Cohen A, AlbrechtJ D, Maurer J J. Near-junction thermal mnagement for wide bandgap devices. Proc IEEE CSICS, 2011: 1[10] Meneghesso G, Verzellesi G, Danesin F, et al. Reliability of GaN high-electron-mobility transistors: state of the art and perspectives. IEEE Trans. Dev. Mat. Rel., 2008, 8(2): 332 doi: 10.1109/TDMR.2008.923743[11] Altman D, Tyhach M, Mcclymonds J, et al. Analysis and characterization of thermal transport in GaN HEMTs on Diamond substrates. Fourteenth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, 2014: 1199[12] Pomeroy J, Bernardoni M, Sarua A, et al. Achieving the best thermal performance for GaN-on-diamond. Proc IEEE Compnd Semicondr Integr Circuit Symp (CSICS), 2013: 1[13] Ejeckam F, Francis D, Faili F, et al. S2-T1: GaN-on-diamond: A brief history. Proc IEEE Lester Eastman Conf High Perform. Devices, 2014: 1[14] Zhao M, Liu X, Zheng Y, et al. Thermal analysis of AlGaN/GaN high-electron-mobility transistors by infrared microscopy. Physical & Failure Analysis of Integrated Circuits, 2013, 291(12): 1[15] Hancock B L, Nazari M, Anderson J, et al. Ultraviolet micro-Raman spectroscopy stress mapping of a 75-mm GaN-on-diamond wafer. Appl Phys Lett, 2016, 108(21): 1467[16] Hancock B L, Nazari M, Anderson J, et al. Investigation of stresses in GaN HEMT layers on a diamond substrate using micro-raman spectroscopy. Compound Semiconductor Integrated Circuit Symposium, 2016: 1[17] Pomeroy J W, Bernardoni M, Dumka D C, et al. Low thermal resistance GaN-on-diamond transistors characterized by three-dimensional Raman thermography mapping. Appl Phys Lett, 2014, 104(8): 083513 doi: 10.1063/1.4865583[18] Sun H, Simon R B, Pomeroy J W, et al. Reducing GaN-on-diamond interfacial thermal resistance for high power transistor applications. Appl Phys Lett, 2015, 106(11): 229[19] Calame J P, Myers R E, Wood F N, et al. Simulations of direct-die-attached microchannel coolers for the thermal management of GaN-on-SiC microwave amplifiers. IEEE Trans Compon Pack Technol, 2005, 28(4): 797 doi: 10.1109/TCAPT.2005.848584[20] Bertoluzza F, Delmonte N, Menozzi R. Three-dimensional finite-element thermal simulation of GaN-based HEMTs. Microelectron Reliab, 2009, 49(5): 468 doi: 10.1016/j.microrel.2009.02.009[21] Chu K K, Yurovchak T, Chao P C, et al. Thermal modeling of high power GaN-on-diamond HEMTs fabricated by low-temperature device transfer process. Compound Semiconductor Integrated Circuit Symposium, 2013: 1[22] Wang A, Tadjer M J, Calle F. Simulation of thermal management in AlGaN/GaN HEMTs with integrated diamond heat spreaders. Semicond Sci Technol, 2013, 28(5): 055010 doi: 10.1088/0268-1242/28/5/055010[23] Denu G A, Mirani J H, Fu J, et al. FEM thermal analysis of Cu/diamond/Cu and diamond/SiC heat spreaders. AIP Adv, 2017, 7(3): 035102 doi: 10.1063/1.4978043[24] Liu T, Kong Y, Wu L, et al. 3-inch GaN-on-diamond HEMTs with device-first transfer technology. IEEE Electron Device Lett, 2017, 37: 1417 -
Proportional views