Citation: |
Hao Luo, Cheng’ao Yang, Shengwen Xie, Xiaoli Chai, Shushan Huang, Yu Zhang, Yingqiang Xu, Zhichuan Niu. High order DBR GaSb based single longitude mode diode lasers at 2 μm wavelength[J]. Journal of Semiconductors, 2018, 39(10): 104007. doi: 10.1088/1674-4926/39/10/104007
****
H Luo, C Yang, S W Xie, X L Chai, S S Huang, Y Zhang, Y Q Xu, Z C Niu, High order DBR GaSb based single longitude mode diode lasers at 2 μm wavelength[J]. J. Semicond., 2018, 39(10): 104007. doi: 10.1088/1674-4926/39/10/104007.
|
High order DBR GaSb based single longitude mode diode lasers at 2 μm wavelength
DOI: 10.1088/1674-4926/39/10/104007
More Information
-
Abstract
The GaSb-based distributed Bragg reflection (DBR) diode laser with 23rd-order gratings have been fabricated by conventional UV lithography and inductively coupled plasma (ICP) etching. The ICP etching conditions were optimized and the relationship among etching depth, duty ratio and side-mode suppression ratio (SMSR) was studied. The device with a ridge width of 100 μm, gratings period of 13 μm and etching depth of 1.55 μm as well as the duty ratio of 85% was fabricated, its maximum SMSR reached 22.52 dB with uncoated cavity facets under single longitudinal operation mode at room temperature. -
References
[1] Curcio J A, Drummeter L F, Petty C C, et al. An experimental study of atmospheric transmission. J Opt Soc Am, 1954, 43: 97[2] Wootten M B, Tan J, Chien Y J, et al. Broadband 2.4 μm superluminescent GaInAsSb/AlGaAsSb quantum well diodes for optical sensing of biomolecules. Semicond Sci Technol, 2014, 29(11): 115014 doi: 10.1088/0268-1242/29/11/115014[3] Kaplan L D. On the calculation of atmospheric transmission functions for the infrared. 2.0.CO;2">J Meteorol, 1952, 9: 139 doi: 10.1175/1520-0469(1952)009<0139:OTCOAT>2.0.CO;2[4] Gebbie H A, Harding W R, Hilsum C, et al. Atmospheric transmission in the 1 to 14 μ region. Proc Royal Soc London Ser A, 1951, 206: 87 doi: 10.1098/rspa.1951.0058[5] Meng Y X, Liu T G, Liu K, et al. A modified empirical mode decomposition algorithm in TDLAS for gas detection. IEEE Photonics J, 2014, 6: 9[6] Krzempek K, Jahjah M, Lewicki R, et al. CW DFT RT diode laser-based sensor for trace-gas detection of ethane using a novel compact multipass gas absorption cell. Appl Phys B, 2013, 112: 461 doi: 10.1007/s00340-013-5544-9[7] Li L, Wang Y, Li S. Application of infrared gas detection technology to safe production and transportation in natural gas industry. Nat Gas Ind, 2011, 31: 96[8] Kim H D, Kang S G, Le C H. A low-cost WDM source with an ASE injected Fabry-Perot semiconductor laser. IEEE Photonics Technol Lett, 2000, 12(8): 1067 doi: 10.1109/68.868010[9] Lu Q Y, Guo W H, Nawrocka M, et al. Single mode lasers based on slots suitable for photonic integration. Opt Express, 2011, 19(26): 140 doi: 10.1364/OE.19.00B140[10] Mueller M, Bauer A, Lehnhardt T, et al. High-power frequency stabilized GaSb DBR tapered laser. IEEE Photonics Technol Lett, 2008, 20(21-24): 2162[11] Viheriala J, Haring K, Suomalainen S, et al. High spectral purity high-power GaSb-based DFB laser fabricated by nanoimprint lithography. IEEE Photonic Technol Lett, 2016, 28(11): 1233 doi: 10.1109/LPT.2016.2519044[12] Xu J, Zhang W, Liu L, et al. Phase-shift control in two-beam laser interference lithography. 2011. IEEE International Conference on Mechatronics and Automation, 2011: 144[13] Murata H, Rokuta E, Shimoyama H, et al. Computer simulation of high brightness and high beam current electron gun for high-thoroughput electrom beam lithography. 25th International Vacuum Nanoelectronics Conference, 2012: 1[14] Forouhar S, Briggs R M, Frez C, et al. High-power laterally coupled distributed-feedback GaSb-based diode lasers at 2 μm wavelength. Appl Phys Lett, 2012, 100(3): 031107 doi: 10.1063/1.3678187[15] Zhang Y, Wang G W, Tang B, et al. Molecular beam epitaxy growth of InGaSb/AlGaAsSb strained quantum well diode lasers. J Semicond, 2011, 32(10): 103002 doi: 10.1088/1674-4926/32/10/103002[16] Fan Z F, Luo J S, Ye W H. Compressible Rayleigh–Taylor instability with preheat in inertial confinement fusion. Chin Phys Lett, 2007, 24(8): 2308 doi: 10.1088/0256-307X/24/8/042[17] Chai X L, Zhang Y, Liao Y P, et al. High power GaSb-based 2.6 μm room-temperature laser diodes with InGaAsSb/AlGaAsSb type I quantum-wells. Infrared Millim Waves, 2017, 36(3): 278[18] Hosoda T, Kipshidze G, Shterengas L, et al. 200 mW type I GaSb-based laser diodes operating at 3 μm: Role of waveguide width. Appl Phys Lett, 2009, 94(26): 261104 doi: 10.1063/1.3159819[19] Gupta J A, Ventrudo B F, Waldron P, et al. External cavity tunable type-I diode laser with continuous-wave singlemode operation at 3.24 μm. Electron Lett, 2010, 46(17): 1218 doi: 10.1049/el.2010.1790[20] Swaminathan K, Janardhanan P E, Sulima O V. Inductively coupled plasma etching of III–V antimonides in BCl3/SiCl4 etching chemisrty. Thin Solid Film, 2008, 516: 8712 doi: 10.1016/j.tsf.2008.05.029[21] Kasunic K J. Design equations for the reflectivity of deep-etch distributed Bragg reflector gratings. Lightwave Technol, 2000, 18(3): 425 doi: 10.1109/50.827516[22] Fricke J, Wenzel H, Matalla M, et al. 980-nm DBR lasers using higher order gratings defined by i-line lithography. Semicond Sci Technol, 2005, 20(11): 1149 doi: 10.1088/0268-1242/20/11/009 -
Proportional views