SEMICONDUCTOR INTEGRATED CIRCUITS

High speed true random number generator with a new structure of coarse-tuning PDL in FPGA

Hongzhen Fang1, Pengjun Wang1, , Xu Cheng2 and Keji Zhou2

+ Author Affiliations

 Corresponding author: Pengjun Wang, Email: wangpengjun@nbu.edu.cn

PDF

Turn off MathJax

Abstract: A metastability-based TRNG (true random number generator) is presented in this paper, and implemented in FPGA. The metastable state of a D flip-flop is tunable through a two-stage PDL (programmable delay line). With the proposed coarse-tuning PDL structure, the TRNG core does not require extra placement and routing to ensure its entropy. Furthermore, the core needs fewer stages of coarse-tuning PDL at higher operating frequency, and thus saves more resources in FPGA. The designed TRNG achieves 25 Mbps @ 100 MHz throughput after proper post-processing, which is several times higher than other previous TRNGs based on FPGA. Moreover, the robustness of the system is enhanced with the adoption of a feedback system. The quality of the designed TRNG is verified by NIST (National Institute of Standards and Technology) and also accepted by class P1 of the AIS-20/31 test suite.

Key words: TRNGFPGAmetastability-basedcoarse-tuning PDL



[1]
Drutarovsky M, Galajda P. A robust chaos-based true random number generator embedded in reconfigurable switched-capacitor hardware. 17th International Conference on Radioelektronika, 2007: 1
[2]
Simka M, Drutarovsky M, Fischer V, et al. Model of a true random number generator aimed at cryptographic applications. IEEE International Symposium on Circuits and Systems, 2006: 5619
[3]
Zhou T, Zhou Z B, Yu M Y, et al. A robust low power chaos-based truly random number generator. Chin J Semicond, 2008, 29(1): 69 (in Chinese)
[4]
Liu Y, Cheung R C C, Wong H. A bias-bounded digital true random number generator architecture. IEEE Trans Circuits Syst I, 2017, 64(1): 133 doi: 10.1109/TCSI.2016.2606353
[5]
Petrie C S, Connelly J A. A noise-based IC random number generator for applications in cryptography. IEEE Trans Circuits Syst I, 2000, 47(5): 615 doi: 10.1109/81.847868
[6]
Mathew S K, Johnston D, Satpathy S, et al. uRNG: A 300–950 mV, 323 Gbps/W all-digital full-entropy true random number generator in 14 nm FinFET CMOS. IEEE J Solid-State Circuits, 2016, 51(7): 1695 doi: 10.1109/JSSC.2016.2558490
[7]
Johnson A P, Rajat S C, Debdeep M. An improved DCM-based tunable true random number generator for Xilinx FPGA. IEEE Trans Circuits Syst II, 2017, 64(4): 452 doi: 10.1109/TCSII.2016.2566262
[8]
Wieczorek P Z, Golofit K. Dual-metastability time-competitive true random number generator. IEEE Transn Circuits Syst I, 2014, 61(1): 134 doi: 10.1109/TCSI.2013.2265952
[9]
Wieczorek P Z. An FPGA implementation of the resolve time-based true random number generator with quality control. IEEE Trans Circuits Syst I, 2014, 61(12): 3450 doi: 10.1109/TCSI.2014.2338615
[10]
Hisashi H, Ichikawa S. FPGA implementation of metastability-based true random number generator. IEICE Trans Inform Syst, 2012, 95(2): 426
[11]
Majzoobi M, Koushanfar F, Devadas S. FPGA-based true random number generation using circuit metastability with adaptive feedback control. International Workshop on Cryptographic Hardware and Embedded Systems. Berlin: Springer, 2011: 17
[12]
Figueiredo P M. Comparator metastability in the presence of noise. IEEE Trans Circuits Syst I, 2013, 60(5): 1286 doi: 10.1109/TCSI.2012.2221195
[13]
Ou H W, Zhao J, Li Q R. Post-processing method in truly random number generator. Comput Sci, 2012, 39(B06): 9
[14]
Tsuneda A, Sugahara T, Inoue T. Statistical properties of modulo-2 added binary sequences. IEICE Trans Fundam Electron, Commun Comput Sci, 2004, 87(9): 2267
[15]
Danger J L, Guilley S, Hoogvorst P. Fast true random generator in FPGAs. IEEE Northeast Workshop on Circuits and Systems, 2007: 506
[16]
Varchola M, Drutarovsky M. New high entropy element for FPGA based true random number generators. International Workshop on Cryptographic Hardware and Embedded Systems. Berlin: Springer, 2010: 351
[17]
Xu X, Wang Y. High speed true random number generator based on FPGA. International Conference on Information Systems Engineering (ICISE) Conference, 2016: 18
[18]
Rozic V, Yang B, Dehaene W, et al. Highly efficient entropy extraction for true random number generators on FPGAs. 52nd ACM/EDAC/IEEE Design Automation Conference (DAC), 2015: 1
[19]
Bae S G, Kim Y, Park Y, et al. 3-Gb/s high-speed true random number generator using common-mode operating comparator and sampling uncertainty of D flip-flop. IEEE J Solid-State Circuits, 2017, 52(2): 605 doi: 10.1109/JSSC.2016.2625341
[20]
Peng, Y M, Zhao H B, Sun X, et al. A side-channel attack resistant AES with 500 Mbps, 1.92 pJ/bit PVT variation tolerant true random number generator. IEEE Computer Society Annual Symposium on VLSI, 2017: 249
Fig. 1.  Metastability of a D flip-flop.

Fig. 2.  Framework of the designed TRNG.

Fig. 3.  (a) Structure of a 6-input LUT. (b) Delay difference of 32 tuning levels compared with [A6 : A2] = 00000.

Fig. 4.  (a) Coarse-tuning PDL unit. (b) Fine-tuning PDL unit.

Fig. 5.  Operating platform of the designed TRNG.

Fig. 6.  (a) Probability of ‘1’s with different sampling windows. (b) The variation of counter value after certain clock cycles @ 100 MHz.

Fig. 7.  Raw output waveform of the designed TRNG @ 100 MHz.

Fig. 8.  Post-processing circuit with 4-stage XOR line and m sequence.

Fig. 9.  Post-processing output waveform of the designed TRNG @ 25 MHz divided operating frequency.

Table 1.   Tuning levels of the counter value with different proportions of ‘1’s.

Proportion of ‘1’s Tuning level of counter value
≥80% +3
52%–80% +1
48%–52% +0
20%–48% −1
≤20% −3
DownLoad: CSV

Table 2.   Test results of NIST for post-processing sequences of the three employed frequencies.

NIST ↓ TRNG → 100 MHz (170 LUTs) 50 MHz (290 LUTs) 25 MHz (530 LUTs)
TEST SUITE p-value Proportion p-value Proportion p-value Proportion
Frequency 0.1045 0.9733 0.3986 0.9904 0.8916 0.9904
Block frequency 0.0451 0.9809 0.8301 0.9952 0.0451 0.9809
Cumulative sums 0.2881 0.9833 0.2715 0.9880 0.4685 0.9952
Runs 0.1094 0.9667 0.6519 1 0.2474 0.9952
Longest run of ones 0.1257 0.9857 0.2856 0.9857 0.4777 0.9952
Rank 0.9372 0.9867 0.7541 1 0.2053 0.9733
Discrete Fourier transform 0.3661 1 0.2992 1 0.0896 0.9809
Nonperiodic template matchings 0.4840 0.9900 0.4992 0.9890 0.5017 0.9890
Overlapping template matchings 0.2597 0.9904 0.7887 0.9583 0.8165 0.9602
Universal statistical 0.3621 0.9733 0.4915 1 0.3621 0.9733
Approximate entropy 0.0649 0.9952 0.2597 0.9809 0.8216 0.9857
Random excursions 0.3922 0.9950 0.1798 0.9957 0.2806 0.9950
Random excursions variant 0.2848 1 0.1267 0.9981 0.2378 0.9978
Serial 0.3539 0.9928 0.6321 0.9880 0.4353 0.9833
Linear complexity 0.8773 0.9714 0.0575 0.9761 0.7773 0.9809
DownLoad: CSV

Table 3.   Test results of AIS-20/31 for post-processing sequences (T0–T5) and raw sequences (T6–T8) of the three employed frequencies.

Parameter 100 MHz (170 LUTs) 50 MHz (290 LUTs) 25 MHz (530 LUTs)
T0-Disjointness Pass Pass Pass
T1-Monobit Pass Pass Pass
T2-Poker Pass Pass Pass
T3-Runs Pass Pass Pass
T4-LongRuns Pass Pass Pass
T5-Autocorrelation Pass Pass Pass
T6-UniformA Fail Fail Fail
T6-UniformB Fail Fail Fail
T7-HomogeneityA Pass Pass Pass
T7-HomogeneityB Pass Pass Pass
T8-Entropy Fail Fail Fail
DownLoad: CSV

Table 4.   Comparison of the designed TRNG with other methodologies in FPGA.

References Methodology Device Resources used by TRNG core Bit rate (Mbps) Operating frequency (MHz)
This work Deep meta state Altera Stratix IV 170 LUTs + DFF 25 100
Ref. [9] Nearly meta state Xilinx XC6SLX16 36 LUTs + 24 DFFs 12.6
Ref. [10] Deep meta state Xilinx XC4VFX 20 256 latches 12.5
Ref. [11] Deep meta state Xilinx Virtex 5 128 LUTs + DFF 2.5
Ref. [15] Deep meta state Altera EPIS 25 100 latches 20 20
Ref. [16] TERO Xilinx Spartan 3E 2 TREOs 0.25 0.25
Ref. [17] Clock jitter Xilinx Virtex-II DCM + DFF 6.05 270
Ref. [18] Ring oscillator Xilinx Spartan 6 3 slices 1.53 100
Ref. [19] Deep meta state 65 nm 1609 μm2 3000 3000
Ref. [20] Deep meta state 130 nm 9488 μm2 500 500
DownLoad: CSV
[1]
Drutarovsky M, Galajda P. A robust chaos-based true random number generator embedded in reconfigurable switched-capacitor hardware. 17th International Conference on Radioelektronika, 2007: 1
[2]
Simka M, Drutarovsky M, Fischer V, et al. Model of a true random number generator aimed at cryptographic applications. IEEE International Symposium on Circuits and Systems, 2006: 5619
[3]
Zhou T, Zhou Z B, Yu M Y, et al. A robust low power chaos-based truly random number generator. Chin J Semicond, 2008, 29(1): 69 (in Chinese)
[4]
Liu Y, Cheung R C C, Wong H. A bias-bounded digital true random number generator architecture. IEEE Trans Circuits Syst I, 2017, 64(1): 133 doi: 10.1109/TCSI.2016.2606353
[5]
Petrie C S, Connelly J A. A noise-based IC random number generator for applications in cryptography. IEEE Trans Circuits Syst I, 2000, 47(5): 615 doi: 10.1109/81.847868
[6]
Mathew S K, Johnston D, Satpathy S, et al. uRNG: A 300–950 mV, 323 Gbps/W all-digital full-entropy true random number generator in 14 nm FinFET CMOS. IEEE J Solid-State Circuits, 2016, 51(7): 1695 doi: 10.1109/JSSC.2016.2558490
[7]
Johnson A P, Rajat S C, Debdeep M. An improved DCM-based tunable true random number generator for Xilinx FPGA. IEEE Trans Circuits Syst II, 2017, 64(4): 452 doi: 10.1109/TCSII.2016.2566262
[8]
Wieczorek P Z, Golofit K. Dual-metastability time-competitive true random number generator. IEEE Transn Circuits Syst I, 2014, 61(1): 134 doi: 10.1109/TCSI.2013.2265952
[9]
Wieczorek P Z. An FPGA implementation of the resolve time-based true random number generator with quality control. IEEE Trans Circuits Syst I, 2014, 61(12): 3450 doi: 10.1109/TCSI.2014.2338615
[10]
Hisashi H, Ichikawa S. FPGA implementation of metastability-based true random number generator. IEICE Trans Inform Syst, 2012, 95(2): 426
[11]
Majzoobi M, Koushanfar F, Devadas S. FPGA-based true random number generation using circuit metastability with adaptive feedback control. International Workshop on Cryptographic Hardware and Embedded Systems. Berlin: Springer, 2011: 17
[12]
Figueiredo P M. Comparator metastability in the presence of noise. IEEE Trans Circuits Syst I, 2013, 60(5): 1286 doi: 10.1109/TCSI.2012.2221195
[13]
Ou H W, Zhao J, Li Q R. Post-processing method in truly random number generator. Comput Sci, 2012, 39(B06): 9
[14]
Tsuneda A, Sugahara T, Inoue T. Statistical properties of modulo-2 added binary sequences. IEICE Trans Fundam Electron, Commun Comput Sci, 2004, 87(9): 2267
[15]
Danger J L, Guilley S, Hoogvorst P. Fast true random generator in FPGAs. IEEE Northeast Workshop on Circuits and Systems, 2007: 506
[16]
Varchola M, Drutarovsky M. New high entropy element for FPGA based true random number generators. International Workshop on Cryptographic Hardware and Embedded Systems. Berlin: Springer, 2010: 351
[17]
Xu X, Wang Y. High speed true random number generator based on FPGA. International Conference on Information Systems Engineering (ICISE) Conference, 2016: 18
[18]
Rozic V, Yang B, Dehaene W, et al. Highly efficient entropy extraction for true random number generators on FPGAs. 52nd ACM/EDAC/IEEE Design Automation Conference (DAC), 2015: 1
[19]
Bae S G, Kim Y, Park Y, et al. 3-Gb/s high-speed true random number generator using common-mode operating comparator and sampling uncertainty of D flip-flop. IEEE J Solid-State Circuits, 2017, 52(2): 605 doi: 10.1109/JSSC.2016.2625341
[20]
Peng, Y M, Zhao H B, Sun X, et al. A side-channel attack resistant AES with 500 Mbps, 1.92 pJ/bit PVT variation tolerant true random number generator. IEEE Computer Society Annual Symposium on VLSI, 2017: 249
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3938 Times PDF downloads: 91 Times Cited by: 0 Times

    History

    Received: 19 July 2017 Revised: 27 August 2017 Online: Uncorrected proof: 24 January 2018Published: 01 March 2018

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Hongzhen Fang, Pengjun Wang, Xu Cheng, Keji Zhou. High speed true random number generator with a new structure of coarse-tuning PDL in FPGA[J]. Journal of Semiconductors, 2018, 39(3): 035001. doi: 10.1088/1674-4926/39/3/035001 ****H Z Fang, P J Wang, X Cheng, K J Zhou. High speed true random number generator with a new structure of coarse-tuning PDL in FPGA[J]. J. Semicond., 2018, 39(3): 035001. doi: 10.1088/1674-4926/39/3/035001.
      Citation:
      Hongzhen Fang, Pengjun Wang, Xu Cheng, Keji Zhou. High speed true random number generator with a new structure of coarse-tuning PDL in FPGA[J]. Journal of Semiconductors, 2018, 39(3): 035001. doi: 10.1088/1674-4926/39/3/035001 ****
      H Z Fang, P J Wang, X Cheng, K J Zhou. High speed true random number generator with a new structure of coarse-tuning PDL in FPGA[J]. J. Semicond., 2018, 39(3): 035001. doi: 10.1088/1674-4926/39/3/035001.

      High speed true random number generator with a new structure of coarse-tuning PDL in FPGA

      doi: 10.1088/1674-4926/39/3/035001
      Funds:

      Project supported by the S&T Plan of Zhejiang Provincial Science and Technology Department (No. 2016C31078), the National Natural Science Foundation of China (Nos. 61574041, 61474068, 61234002), and the K.C. Wong Magna Fund in Ningbo University, China.

      More Information
      • Corresponding author: Email: wangpengjun@nbu.edu.cn
      • Received Date: 2017-07-19
      • Revised Date: 2017-08-27
      • Available Online: 2018-03-01
      • Published Date: 2018-03-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return