Citation: |
P. A. Bokhan, N. V. Fateev, I. V. Osinnykh, T. V. Malin, Dm. E. Zakrevsky, K. S. Zhuravlev, Xin Wei, Jian Li, Lianghui Chen. Light emission of heavily doped AlGaN structures under optical pumping[J]. Journal of Semiconductors, 2018, 39(4): 043002. doi: 10.1088/1674-4926/39/4/043002
****
P. A. Bokhan, N. V. Fateev, I. V. Osinnykh, T. V. Malin, Dm. E. Zakrevsky, K. S. Zhuravlev, X Wei, J Li, L H Chen. Light emission of heavily doped AlGaN structures under optical pumping[J]. J. Semicond., 2018, 39(4): 043002. doi: 10.1088/1674-4926/39/4/043002.
|
Light emission of heavily doped AlGaN structures under optical pumping
DOI: 10.1088/1674-4926/39/4/043002
More Information
-
Abstract
Spectral, temporal and polarization characteristics of spontaneous and stimulated luminescence of Al0.5Ga0.5N/AlN structures grown by molecular beam epitaxy were studied at the optical pulsed pumping with λ = 266 nm. Samples with a high degree of silicon doping were investigated. The vast majority of radiation falls on transitions within the band gap between the levels of defects. As a result, the radiation band embracing the whole visible range of more than 300 THz is observed in both spontaneous radiation and induced luminescence. In spontaneous radiation the band has a smooth spectral intensity distribution over the wavelengths, whereas induced radiation has its sharp peaks corresponding to the mode structure of the planar waveguide. The measured gain of the active medium is g ≈ 70 cm−1 for a weak signal.-
Keywords:
- film,
- optical characteristics,
- laser material
-
References
[1] Yoshida H, Yamashita Y, Kuwabara M, et al. Demonstration of an ultraviolet 336 nm AlGaN multiple-quantum-well laser diode. Appl Phys Lett, 2008, 93: 241106 doi: 10.1063/1.3050539[2] Shatalov M, Gaevski M, Adivarahan V, et al. Room-temperature stimulated emission from AlN at 214 nm. Jpn J Appl Phys, 2006, 45: L1286 doi: 10.1143/JJAP.45.L1286[3] Pecora E F, Zhang W, Nikiforov A Y, et al. Sub-250 nm room-temperature optical gain from AlGaN/AlN multiple quantum wells with strong band-structure potential fluctuations. Appl Phys Lett, 2012, 100: 061111 doi: 10.1063/1.3681944[4] Tian Y, Yan J, Zhang Y, et al. Stimulated emission at 288 nm from silicon-doped AlGaN-based multiple-quantum-well laser. Opt Express, 2015, 23: 11334 doi: 10.1364/OE.23.011334[5] Lutsenko E V, Rzheutskii N V, Pavlovskii V N, et al. Spontaneous and stimulated emission in the mid-ultraviolet range of quantum-well heterostructures based on AlGaN compounds grown by molecular beam epitaxy on c-sapphire substrates. Phys Solid State, 2013, 55: 2173 doi: 10.1134/S106378341310020X[6] Bokhan P A, Gugin P P, Zakrevsky Dm E, et al. Luminescence and superradiance in electron-beam-excited AlxGa1–xN. Appl Phys, 2014, 116: 113103 doi: 10.1063/1.4894774[7] Yoshida S, Misawa S, Gonda S. Properties of AlxGa1–xN films prepared by reactive molecular beam epitaxy. J Appl Phys, 1982, 53: 6844 doi: 10.1063/1.329998[8] Bradley S T, Goss S H, Brillson L J, et al. Deep level defects and doping in high Al mole fraction AlGaN. J Vac Sci Technol B, 2003, 21: 2558 doi: 10.1116/1.1627331[9] Zhao D G, Jiang D S, Zhu J J, et al. Role of edge dislocation and Si impurity in linking the blue luminescence and yellow luminescence in n-type GaN films. Appl Phys Lett, 2009, 95: 041901 doi: 10.1063/1.3187540[10] Osinnykh I V, Malin T V, Plyusnin V F, et al. Characterization of the green band in photoluminescence spectra of heavily doped AlxGa1–xN:Si with the Al content x > 0.5. Jpn J Appl Phys, 2016, 55: 05FG09 doi: 10.7567/JJAP.55.05FG09[11] Zhuravlev K S, Osinnykh I V, Protasov D Y, et al. Characterization of MBE grown AlGaN layers heavily doped using silane. Phys Status Solidi C, 2013, 10: 315 doi: 10.1002/pssc.201200703[12] Muth J F, Brown J D, Johnson M A L, et al. Absorption coefficient and refractive index of GaN, AlN, and AlGaN alloys. MRS Internet J Nitride Semicond Res, 1999, 4S1: G5.2[13] Malin T V, Gilinsky A M, Mansurov V G, et al. Increase in the diffusion length of minority carriers in AlxGa1–xN alloys (x = 0–0.1) fabricated by ammonia molecular beam epitaxy. Semiconductors, 2015, 49: 1285 doi: 10.1134/S1063782615100140[14] Ayupov B M, Sulyaeva V S, Shayapov V R, et al. Searching for the starting approximation when solving inverse problems in ellipsometry and spectrophotometry. J Opt Technol, 2011, 78: 350 doi: 10.1364/JOT.78.000350[15] Shaklee K L. Direct determination of optical gain in semiconductor crystals. Appl Phys Lett, 1971, 18: 475 doi: 10.1063/1.1653501[16] Oster A, Erbert G, Wenzel H. Gain spectra measurements by a variable stripe length method with current injection. Electron Lett, 1997, 33: 864 doi: 10.1049/el:19970605[17] Sanford N A, Robins L H, Davydov A V, et al. Refractive index study of AlxGa1–xN films grown on sapphire substrates. J Appl Phys, 2003, 94: 2980 doi: 10.1063/1.1598276[18] Sanford N A, Robins L H, Davydov A V, et al. Determination of the refractive indices of AlN, GaN, and AlxGa1–xN grown on (111) Si substrates. J Appl Phys, 2003, 93: 5222 doi: 10.1063/1.1563293[19] Antoine-Vincent N, Natali F, Mihailovic M, et al. An introduction to integrated optics. IEEE Trans Microwave Theory Tech, 1975, 23: 2 doi: 10.1109/TMTT.1975.1128500[20] Kogelnik H. Unique optical properties of AlGaN alloys and related ultraviolet emitters. Appl Phys Lett, 2004, 84: 5264 doi: 10.1063/1.1765208[21] Nam K B, Li J, Nakarmi M L, et al. Laser-related spectroscopy of ion-doped crystals for tunable solid-state lasers. Appl Phys B, 2001, 72: 515 doi: 10.1007/s003400100540 -
Proportional views