J. Semicond. > 2018, Volume 39 > Issue 8 > 085003

SEMICONDUCTOR INTEGRATED CIRCUITS

A 0.7–7 GHz wideband reconfigurable receiver RF front-end in CMOS

Youming Zhang1, Lijuan Yang1, Fengyi Huang1, 2, , Nan Jiang2 and Xuegang Zhang1

+ Author Affiliations

 Corresponding author: Fengyi Huang, Email: fyhuang@seu.edu.cn

DOI: 10.1088/1674-4926/39/8/085003

PDF

Turn off MathJax

Abstract: A 0.7–7 GHz wideband RF receiver front-end SoC is designed using the CMOS process. The front-end is composed of two main blocks: a single-ended wideband low noise amplifier (LNA) and an in-phase/quadrature (I/Q) voltage-driven passive mixer with IF amplifiers. Based on a self-biased resistive negative feedback topology, the LNA adopts shunt-peaking inductors and a gate inductor to boost the bandwidth. The passive down-conversion mixer includes two parts: passive switches and IF amplifiers. The measurement results show that the front-end works well at different LO frequencies, and this chip is reconfigurable among 0.7 to 7 GHz by tuning the LO frequency. The measured results under 2.5-GHz LO frequency show that the front-end SoC achieves a maximum conversion gain of 26 dB, a minimum noise figure (NF) of 3.2 dB, with an IF bandwidth of greater than 500 MHz. The chip area is 1.67 × 1.08 mm2.

Key words: wideband LNAresistive-feedbackCMOSpassive mixer



[1]
Wang X, Sturm J, Yan N, et al. 0.6–3-GHz wideband receiver RF front-end with a feedforward noise and distortion cancellation resistive-feedback LNA. IEEE Trans Microwave Theory Tech, 2012, 60(2): 387 doi: 10.1109/TMTT.2011.2176138
[2]
Zhou H M, Zhang Y, Yu Y, et al. Analysis and design of a 3.1-10.6 GHz wideband low-noise amplifier using resistive feedback. IEEE International Conference on Ubiquitous Wireless Broadband (ICUWB), 2016: 1
[3]
Cho K F, Wang S. A 0.4–5.3 GHz wideband LNA using resistive feedback topology. IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO), 2016: 1
[4]
Zhang X G, Yang L J, Huang F Y. A 0.3–6 GHz broadband noise cancelling low noise amplifier. International Conference on Integrated Circuits and Microsystems (ICICM), 2016: 144
[5]
Morena-Álvarez-Palencia C D L, Burgos-García M. Broadband RF front-end based on the six-port network architecture for software defined radio. 2010 Milcom Military Communications Conference, 2010: 2137
[6]
Adiseno I, Ismail M, Olsson H. A wide-band RF front-end for multiband multistandard high-linearity low-IF wireless receivers. IEEE J Solid-State Circuits, 2002, 37(9): 1162
[7]
Wang C, Li Z Q, Li Q, et al. A broadband 47–67 GHz LNA with 17.3 dB gain in 65-nm CMOS. J Semicond, 2015, 36(10): 105010 doi: 10.1088/1674-4926/36/10/105010
[8]
Chang T, Chen J, Rigge L A, et al. ESD-protected wideband CMOS LNAs using modified resistive feedback techniques with chip-on-board packaging. IEEE Trans Microwave Theory Tech, 2008, 56(8): 1817 doi: 10.1109/TMTT.2008.927301
[9]
Chen M Q, Lin J S. A 0.1–20 GHz low-power self-biased resistive-feedback LNA in 90 nm digital CMOS. IEEE Microwave Wireless Compon Lett, 2009, 19(5): 323 doi: 10.1109/LMWC.2009.2017608
[10]
Liu L, Zhang K, Ren Z, et al. 0.05–2.5 GHz wideband RF front-end exploiting noise cancellation and multi-gated transistors. IEEE Asia-Pacific Microwave Conference, 2015: 1
[11]
Qiu L, Liu S, Zhang Y, et al. A 0.9–2.6 GHz cognitive radio receiver with spread spectrum frequency synthesizer for spectrum sensing. IEEE Sens J, 2017, 17(22): 7569 doi: 10.1109/JSEN.2017.2760339
[12]
Wu L, Ng A W L, Zheng S, et al. A 0.9–5.8-GHz software-defined receiver RF front-end with transformer-based current-gain boosting and harmonic rejection calibration. IEEE Trans Very Large Scale Integr (VLSI) Syst, 2017, 25(8): 2371 doi: 10.1109/TVLSI.2017.2695719
Fig. 1.  Simplified schematic of the proposed wideband LNA.

Fig. 2.  The small signal equivalent circuit of the input network.

Fig. 3.  The schematic of the proposed passive mixer.

Fig. 4.  The schematic of the proposed LO chain.

Fig. 5.  Microphotograph of the wideband RF front-end chip.

Fig. 6.  Measured S11.

Fig. 7.  Measured NF (fLO = 2.5 GHz).

Fig. 8.  Measured conversion gain (fLO = 2.5 GHz).

Fig. 9.  Measured conversion gain under different LOs (fLO1 = 2.5 GHz, fLO2 = 5 GHz, fLO3 = 7 GHz).

Table 1.   Specification of various wireless communication standards and comparisons with this work.

Parameter LTE 802.11g 802.11ac This work
Frequency (GHz) 0.9, 1.8, 1.9, 2.0, 2.4, 2.5, 2.6 2.4 5.8 0.7–7
NF (dB) 5 14.8 14 3.5
IIP3 (dBm) −20 −22.5 −24 −19.5
P1dB (dBm) −25 −26 −26 −23
Channel BW (MHz) 20 22 160 600
DownLoad: CSV

Table 2.   Performance comparisons with recently published RF receiver front-end.

Parameter RF band (GHz) IF Bandwidth (MHz) Gain (dB) NF(DSB) (dB) S11 (dB) Area (mm2) Supply (V)
This work 0.7–7 600 26 3.2–3.5 < −10 1.8 1.2
Ref. [1] 0.6–3 0.8–12 48–42 3 < −8 1.5 1.2
Ref. [10] 0.05–2.5 0.3–20 22–30 2.7–4.5 1.36 1.8
Ref. [11] 0.9–2.6 35–70 33.5 5.3 < −10 2.75* 1.8
Ref. [12] 0.9–5.8 22–25 < 4 < −10 4.2 1.2
* The area of whole receiver.
DownLoad: CSV
[1]
Wang X, Sturm J, Yan N, et al. 0.6–3-GHz wideband receiver RF front-end with a feedforward noise and distortion cancellation resistive-feedback LNA. IEEE Trans Microwave Theory Tech, 2012, 60(2): 387 doi: 10.1109/TMTT.2011.2176138
[2]
Zhou H M, Zhang Y, Yu Y, et al. Analysis and design of a 3.1-10.6 GHz wideband low-noise amplifier using resistive feedback. IEEE International Conference on Ubiquitous Wireless Broadband (ICUWB), 2016: 1
[3]
Cho K F, Wang S. A 0.4–5.3 GHz wideband LNA using resistive feedback topology. IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO), 2016: 1
[4]
Zhang X G, Yang L J, Huang F Y. A 0.3–6 GHz broadband noise cancelling low noise amplifier. International Conference on Integrated Circuits and Microsystems (ICICM), 2016: 144
[5]
Morena-Álvarez-Palencia C D L, Burgos-García M. Broadband RF front-end based on the six-port network architecture for software defined radio. 2010 Milcom Military Communications Conference, 2010: 2137
[6]
Adiseno I, Ismail M, Olsson H. A wide-band RF front-end for multiband multistandard high-linearity low-IF wireless receivers. IEEE J Solid-State Circuits, 2002, 37(9): 1162
[7]
Wang C, Li Z Q, Li Q, et al. A broadband 47–67 GHz LNA with 17.3 dB gain in 65-nm CMOS. J Semicond, 2015, 36(10): 105010 doi: 10.1088/1674-4926/36/10/105010
[8]
Chang T, Chen J, Rigge L A, et al. ESD-protected wideband CMOS LNAs using modified resistive feedback techniques with chip-on-board packaging. IEEE Trans Microwave Theory Tech, 2008, 56(8): 1817 doi: 10.1109/TMTT.2008.927301
[9]
Chen M Q, Lin J S. A 0.1–20 GHz low-power self-biased resistive-feedback LNA in 90 nm digital CMOS. IEEE Microwave Wireless Compon Lett, 2009, 19(5): 323 doi: 10.1109/LMWC.2009.2017608
[10]
Liu L, Zhang K, Ren Z, et al. 0.05–2.5 GHz wideband RF front-end exploiting noise cancellation and multi-gated transistors. IEEE Asia-Pacific Microwave Conference, 2015: 1
[11]
Qiu L, Liu S, Zhang Y, et al. A 0.9–2.6 GHz cognitive radio receiver with spread spectrum frequency synthesizer for spectrum sensing. IEEE Sens J, 2017, 17(22): 7569 doi: 10.1109/JSEN.2017.2760339
[12]
Wu L, Ng A W L, Zheng S, et al. A 0.9–5.8-GHz software-defined receiver RF front-end with transformer-based current-gain boosting and harmonic rejection calibration. IEEE Trans Very Large Scale Integr (VLSI) Syst, 2017, 25(8): 2371 doi: 10.1109/TVLSI.2017.2695719
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 4099 Times PDF downloads: 98 Times Cited by: 0 Times

    History

    Received: 25 July 2017 Revised: 26 March 2018 Online: Uncorrected proof: 16 May 2018Published: 09 August 2018

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Youming Zhang, Lijuan Yang, Fengyi Huang, Nan Jiang, Xuegang Zhang. A 0.7–7 GHz wideband reconfigurable receiver RF front-end in CMOS[J]. Journal of Semiconductors, 2018, 39(8): 085003. doi: 10.1088/1674-4926/39/8/085003 ****Y M Zhang, L J Yang, F Y Huang, N Jiang, X G Zhang, A 0.7–7 GHz wideband reconfigurable receiver RF front-end in CMOS[J]. J. Semicond., 2018, 39(8): 085003. doi: 10.1088/1674-4926/39/8/085003.
      Citation:
      Youming Zhang, Lijuan Yang, Fengyi Huang, Nan Jiang, Xuegang Zhang. A 0.7–7 GHz wideband reconfigurable receiver RF front-end in CMOS[J]. Journal of Semiconductors, 2018, 39(8): 085003. doi: 10.1088/1674-4926/39/8/085003 ****
      Y M Zhang, L J Yang, F Y Huang, N Jiang, X G Zhang, A 0.7–7 GHz wideband reconfigurable receiver RF front-end in CMOS[J]. J. Semicond., 2018, 39(8): 085003. doi: 10.1088/1674-4926/39/8/085003.

      A 0.7–7 GHz wideband reconfigurable receiver RF front-end in CMOS

      DOI: 10.1088/1674-4926/39/8/085003
      More Information
      • Corresponding author: Email: fyhuang@seu.edu.cn
      • Received Date: 2017-07-25
      • Revised Date: 2018-03-26
      • Published Date: 2018-08-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return