J. Semicond. > 2019, Volume 40 > Issue 3 > 032701

ARTICLES

Photovoltaic properties of Cu2O-based heterojunction solar cells using n-type oxide semiconductor nano thin films prepared by low damage magnetron sputtering method

Toshihiro Miyata, Kyosuke Watanabe, Hiroki Tokunaga and Tadatsugu Minami

+ Author Affiliations

 Corresponding author: Toshihiro Miyata, email: tmiyata@neptune.kanazawa-it.ac.jp

DOI: 10.1088/1674-4926/40/3/032701

PDF

Turn off MathJax

Abstract: We improved the photovoltaic properties of Cu2O-based heterojunction solar cells using n-type oxide semiconductor thin films prepared by a sputtering apparatus with our newly developed multi-chamber system. We also obtained the highest efficiency (3.21%) in an AZO/p-Cu2O heterojunction solar cell prepared with optimized pre-sputtering conditions using our newly developed multi-chamber sputtering system. This value achieves the same or higher characteristics than AZO/Cu2O solar cells with a similar structure prepared by the pulse laser deposition method.

Key words: Cu2OAZOsolar celloxide thin filmmagnetron sputtering



[1]
N Asima, K Sopiana, S Ahmadib, et al. A review on the role of materials science in solar cells. Renew Sustain Energy Rev, 2012, 16: 5834. doi: 10.1016/j.rser.2012.06.004
[2]
A E Rakhshani. Preparation, characteristics and photovoltaic properties of cuprous oxide – a review. Solid-State Electron, 1986, 29: 7. doi: 10.1016/0038-1101(86)90191-7
[3]
G P Pollack. D Trivichi. Photoelectric properties of cuprous oxide. J Appl Phys, 1975, 46: 163. doi: 10.1063/1.321312
[4]
J Herion, E A Niekisch, G Scharl. Investigation of metal oxide/cuprous oxide heterojunction solar cells. Sol Energy Mater, 1980, 4: 101. doi: 10.1016/0165-1633(80)90022-2
[5]
L Papadimitriou, N A Economou, D Trivich. Heterojunction solar cells on cuprous oxide. Sol Cells, 1981, 3: 73. doi: 10.1016/0379-6787(81)90084-3
[6]
L C Olsen, F W Addis, W Miller. Experimental and theoretical studies of Cu2O solar cells. Sol Cells, 1982, 7: 247. doi: 10.1016/0379-6787(82)90050-3
[7]
W M Sears, E Fortin, J B Webb. Indium tin oxide/Cu2O photovoltaic cells. Thin Solid Films, 1983,103: 303. doi: 10.1016/0040-6090(83)90447-9
[8]
B P Rai. Cu2O solar cells: A review. Sol Cells, 1988, 25: 265. doi: 10.1016/0379-6787(88)90065-8
[9]
R N Briskman. A study of electrodeposited cuprous oxide photovoltaic cells. Sol Energy Mater Sol Cells, 1992, 27: 361. doi: 10.1016/0927-0248(92)90097-9
[10]
T Minami, Y Nishi, T Miyata, et al. High-efficiency oxide solar cells with ZnO/Cu2O heterojunction fabricated on thermally oxidized Cu2O sheets. Appl Phys Express, 2011, 4: 062301. doi: 10.1143/APEX.4.062301
[11]
Y S Lee, J Heo, S C Siah, et al. Ultrathin amorphous zinc-tin-oxide buffer layer for enhancing heterojunction interface quality in metal-oxide solar cells. Energy Environ Sci, 2013, 6: 2112. doi: 10.1039/c3ee24461j
[12]
T Minami, Y Nishi, T Miyata. High-efficiency Cu2O-based heterojunction solar cells fabricated using a Ga2O3 thin film as n-type layer. Appl Phys Express, 2013, 6: 044101. doi: 10.7567/APEX.6.044101
[13]
S W Lee, Y S Lee, J Heo, et al. Improved Cu2O-based solar cells using atomic layer deposition to control the Cu oxidation state at the p-n junction. Adv Energy Mater, 2014, 4: 1301916. doi: 10.1002/aenm.201301916
[14]
Y S Lee, D Chua, R E Brandt, et al. Atomic layer deposited gallium oxide buffer layer enables 1.2 V open-circuit voltage in cuprous oxide solar cells. Adv Mater, 2014, 26: 4704. doi: 10.1002/adma.v26.27
[15]
T Minami, Y Nishi, T Miyata. Heterojunction solar cell with 6% efficiency based on an n-type aluminum–gallium–oxide thin film and p-type sodium-doped Cu2O sheet. Appl Phys Express, 2015, 8: 022301. doi: 10.7567/APEX.8.022301
[16]
Y Ievskaya, R L Z Hoye, A Sadhanala, et al. Fabrication of ZnO/Cu2O heterojunctions in atmospheric conditions: Improved interface quality and solar cell performanceSol. Energy Mater Sol Cells, 2015, 135: 43. doi: 10.1016/j.solmat.2014.09.018
[17]
R L Z Hoye, R E Brandt, Y Ievskaya, et al. Perspective: Maintaining surface-phase purity is key to efficient open air fabricated cuprous oxide solar cells. APL Mater, 2015, 3: 020901. doi: 10.1063/1.4913442
[18]
T Minami, T Miyata, Y Nishi. Efficiency improvement of Cu2O-based heterojunction solar cells fabricated using thermally oxidized copper sheets. Thin Solid Films, 2014, 559: 105. doi: 10.1016/j.tsf.2013.11.026
[19]
T Minami, T Miyata, Y Nishi. Cu2O-based heterojunction solar cells with an Al-doped ZnO/oxide semiconductor/thermally oxidized Cu2O sheet structure. Sol Energy, 2014, 105: 206. doi: 10.1016/j.solener.2014.03.036
[20]
T Minami, Y Nishi, T Miyata. Cu2O-based solar cells using oxide semiconductors. J Semicond, 2016, 37: 014002. doi: 10.1088/1674-4926/37/1/014002
[21]
Nishi Y, Miyata T, Nomoto J, et al. High-efficiency Cu2O-based heterojunction solar cells fabricated on thermally oxidized copper sheet. Conf Rec 37th IEEE Photovoltaic Specialists Conf, 2011, 266
[22]
T. Minami, Y. Nishi, and T. Miyata. Impact of incorporating sodium into polycrystalline p-type Cu2O for heterojunction solar cell applications. Appl Phys Lett, 2014, 105: 212104. doi: 10.1063/1.4902879
Fig. 1.  (Color online) Cross-sectional structure of AZO/p-Cu2O solar cell.

Fig. 2.  (Color online) Typical J–V characteristics for AZO/p-Cu2O heterojunction solar cells prepared with different target-Cu2O sheet distances.

Fig. 3.  (Color online) Conversion efficiency (η), fill factor (FF), VOC, and JSC as functions of target-Cu2O sheet distance for AZO/p-Cu2O heterojunction solar cells.

Fig. 4.  (Color online) Typical J–V characteristics for AZO/p-Cu2O heterojunction solar cells prepared with different sputtering voltages: 380 and 700 V.

Fig. 5.  (Color online) J–V characteristics measured under dark conditions obtained in AZO/p-Cu2O heterojunction solar cell shown in Fig. 4.

Fig. 6.  (Color online) Typical J–V characteristics as a function of pre-sputtering time for AZO/p-Cu2O heterojunction solar cells.

[1]
N Asima, K Sopiana, S Ahmadib, et al. A review on the role of materials science in solar cells. Renew Sustain Energy Rev, 2012, 16: 5834. doi: 10.1016/j.rser.2012.06.004
[2]
A E Rakhshani. Preparation, characteristics and photovoltaic properties of cuprous oxide – a review. Solid-State Electron, 1986, 29: 7. doi: 10.1016/0038-1101(86)90191-7
[3]
G P Pollack. D Trivichi. Photoelectric properties of cuprous oxide. J Appl Phys, 1975, 46: 163. doi: 10.1063/1.321312
[4]
J Herion, E A Niekisch, G Scharl. Investigation of metal oxide/cuprous oxide heterojunction solar cells. Sol Energy Mater, 1980, 4: 101. doi: 10.1016/0165-1633(80)90022-2
[5]
L Papadimitriou, N A Economou, D Trivich. Heterojunction solar cells on cuprous oxide. Sol Cells, 1981, 3: 73. doi: 10.1016/0379-6787(81)90084-3
[6]
L C Olsen, F W Addis, W Miller. Experimental and theoretical studies of Cu2O solar cells. Sol Cells, 1982, 7: 247. doi: 10.1016/0379-6787(82)90050-3
[7]
W M Sears, E Fortin, J B Webb. Indium tin oxide/Cu2O photovoltaic cells. Thin Solid Films, 1983,103: 303. doi: 10.1016/0040-6090(83)90447-9
[8]
B P Rai. Cu2O solar cells: A review. Sol Cells, 1988, 25: 265. doi: 10.1016/0379-6787(88)90065-8
[9]
R N Briskman. A study of electrodeposited cuprous oxide photovoltaic cells. Sol Energy Mater Sol Cells, 1992, 27: 361. doi: 10.1016/0927-0248(92)90097-9
[10]
T Minami, Y Nishi, T Miyata, et al. High-efficiency oxide solar cells with ZnO/Cu2O heterojunction fabricated on thermally oxidized Cu2O sheets. Appl Phys Express, 2011, 4: 062301. doi: 10.1143/APEX.4.062301
[11]
Y S Lee, J Heo, S C Siah, et al. Ultrathin amorphous zinc-tin-oxide buffer layer for enhancing heterojunction interface quality in metal-oxide solar cells. Energy Environ Sci, 2013, 6: 2112. doi: 10.1039/c3ee24461j
[12]
T Minami, Y Nishi, T Miyata. High-efficiency Cu2O-based heterojunction solar cells fabricated using a Ga2O3 thin film as n-type layer. Appl Phys Express, 2013, 6: 044101. doi: 10.7567/APEX.6.044101
[13]
S W Lee, Y S Lee, J Heo, et al. Improved Cu2O-based solar cells using atomic layer deposition to control the Cu oxidation state at the p-n junction. Adv Energy Mater, 2014, 4: 1301916. doi: 10.1002/aenm.201301916
[14]
Y S Lee, D Chua, R E Brandt, et al. Atomic layer deposited gallium oxide buffer layer enables 1.2 V open-circuit voltage in cuprous oxide solar cells. Adv Mater, 2014, 26: 4704. doi: 10.1002/adma.v26.27
[15]
T Minami, Y Nishi, T Miyata. Heterojunction solar cell with 6% efficiency based on an n-type aluminum–gallium–oxide thin film and p-type sodium-doped Cu2O sheet. Appl Phys Express, 2015, 8: 022301. doi: 10.7567/APEX.8.022301
[16]
Y Ievskaya, R L Z Hoye, A Sadhanala, et al. Fabrication of ZnO/Cu2O heterojunctions in atmospheric conditions: Improved interface quality and solar cell performanceSol. Energy Mater Sol Cells, 2015, 135: 43. doi: 10.1016/j.solmat.2014.09.018
[17]
R L Z Hoye, R E Brandt, Y Ievskaya, et al. Perspective: Maintaining surface-phase purity is key to efficient open air fabricated cuprous oxide solar cells. APL Mater, 2015, 3: 020901. doi: 10.1063/1.4913442
[18]
T Minami, T Miyata, Y Nishi. Efficiency improvement of Cu2O-based heterojunction solar cells fabricated using thermally oxidized copper sheets. Thin Solid Films, 2014, 559: 105. doi: 10.1016/j.tsf.2013.11.026
[19]
T Minami, T Miyata, Y Nishi. Cu2O-based heterojunction solar cells with an Al-doped ZnO/oxide semiconductor/thermally oxidized Cu2O sheet structure. Sol Energy, 2014, 105: 206. doi: 10.1016/j.solener.2014.03.036
[20]
T Minami, Y Nishi, T Miyata. Cu2O-based solar cells using oxide semiconductors. J Semicond, 2016, 37: 014002. doi: 10.1088/1674-4926/37/1/014002
[21]
Nishi Y, Miyata T, Nomoto J, et al. High-efficiency Cu2O-based heterojunction solar cells fabricated on thermally oxidized copper sheet. Conf Rec 37th IEEE Photovoltaic Specialists Conf, 2011, 266
[22]
T. Minami, Y. Nishi, and T. Miyata. Impact of incorporating sodium into polycrystalline p-type Cu2O for heterojunction solar cell applications. Appl Phys Lett, 2014, 105: 212104. doi: 10.1063/1.4902879
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 4803 Times PDF downloads: 99 Times Cited by: 0 Times

    History

    Received: 15 June 2018 Revised: 29 September 2018 Online: Accepted Manuscript: 11 January 2019Uncorrected proof: 11 January 2019Published: 01 March 2019

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Toshihiro Miyata, Kyosuke Watanabe, Hiroki Tokunaga, Tadatsugu Minami. Photovoltaic properties of Cu2O-based heterojunction solar cells using n-type oxide semiconductor nano thin films prepared by low damage magnetron sputtering method[J]. Journal of Semiconductors, 2019, 40(3): 032701. doi: 10.1088/1674-4926/40/3/032701 ****T Miyata, K Watanabe, H Tokunaga, T Minami, Photovoltaic properties of Cu2O-based heterojunction solar cells using n-type oxide semiconductor nano thin films prepared by low damage magnetron sputtering method[J]. J. Semicond., 2019, 40(3): 032701. doi: 10.1088/1674-4926/40/3/032701.
      Citation:
      Toshihiro Miyata, Kyosuke Watanabe, Hiroki Tokunaga, Tadatsugu Minami. Photovoltaic properties of Cu2O-based heterojunction solar cells using n-type oxide semiconductor nano thin films prepared by low damage magnetron sputtering method[J]. Journal of Semiconductors, 2019, 40(3): 032701. doi: 10.1088/1674-4926/40/3/032701 ****
      T Miyata, K Watanabe, H Tokunaga, T Minami, Photovoltaic properties of Cu2O-based heterojunction solar cells using n-type oxide semiconductor nano thin films prepared by low damage magnetron sputtering method[J]. J. Semicond., 2019, 40(3): 032701. doi: 10.1088/1674-4926/40/3/032701.

      Photovoltaic properties of Cu2O-based heterojunction solar cells using n-type oxide semiconductor nano thin films prepared by low damage magnetron sputtering method

      DOI: 10.1088/1674-4926/40/3/032701
      More Information

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return