Citation: |
Yaoyao Lu, Daolin Cai, Yifeng Chen, Shuai Yan, Lei Wu, Yuanguang Liu, Yang Li, Zhitang Song. Improving the data retention of phase change memory by using a doping element in selected Ge2Sb2Te5[J]. Journal of Semiconductors, 2019, 40(4): 042402. doi: 10.1088/1674-4926/40/4/042402
****
Y Y Lu, D L Cai, Y F Chen, S Yan, L Wu, Y G Liu, Y Li, Z T Song, Improving the data retention of phase change memory by using a doping element in selected Ge2Sb2Te5[J]. J. Semicond., 2019, 40(4): 042402. doi: 10.1088/1674-4926/40/4/042402.
|
Improving the data retention of phase change memory by using a doping element in selected Ge2Sb2Te5
DOI: 10.1088/1674-4926/40/4/042402
More Information
-
Abstract
The crystallization characteristics of a ubiquitous T-shaped phase change memory (PCM) cell, under SET current pulse and very small disturb current pulse, have been investigated by finite element modelling. As analyzed in this paper, the crystallization region under SET current pulse presents first on the corner of the bottom electron contact (BEC) and then promptly forms a filament shunting down the amorphous phase to achieve the low-resistance state, whereas the tiny disturb current pulse accelerates crystallization at the axis of symmetry in the phase change material. According to the different crystallization paths, a new structure of phase change material layer is proposed to improve the data retention for PCM without impeding SET operation. This structure only requires one or two additional process steps to dope nitrogen element in the center region of phase change material layer to increase the crystallization temperature in this confined region. The electrical-thermal characteristics of PCM cells with incremental doped radius have been analyzed and the best performance is presented when the doped radius is equal to the radius of the BEC. -
References
[1] Lai S. Current status of the phase change memory and its future. IEEE International Electron Devices Meeting, 2003, 255 doi: 10.1109/IEDM.2003.1269271[2] Ovshinsky S R. Reversible electrical switching phenomena in disordered structures. Phys Rev Lett, 1968, 21, 1450 doi: 10.1103/PhysRevLett.21.1450[3] Sun Z M, Zhou J, Ahuja R. Structure of phase change materials for data storage. Phys Rev Lett, 2006, 96, 055507 doi: 10.1103/PhysRevLett.96.055507[4] Raoux S, Welnic W, Ielmini D. Phase change materials and their application to nonvolatile memories. Chem Rev, 2009, 110, 240 doi: 10.1021/cr900040x[5] Kohary K, Wright C D. Electric field induced crystallization in phase-change materials for memory applications. Appl Phys Lett, 2011, 98, 223102 doi: 10.1063/1.3595408[6] Li J M, Yang H M, Lim K G. Field-dependent activation energy of nucleation and switching in phase change memory. Appl Phys Lett, 2012, 100, 263501 doi: 10.1063/1.4731289[7] Lee B S, Bishop S G. phase change materials: optical and electrical properties of phase change materials. In: Springer Science + Business Media. New York, 2009, 189[8] Cai D L, Chen H P, Wang Q, et al. An 8-mb phase-change random access memory chip based on a resistor-on-via-stacked-plug storage cell. IEEE Electron Device Lett, 2012, 33, 1270 doi: 10.1109/LED.2012.2204952[9] Liu Y, Song Z T, Ling Y, et al. Three-dimensional numerical simulation of phase-change memory cell with probe like bottom electrode structure. Jpn J Appl Phys, 2009, 48, 024502 doi: 10.1143/JJAP.48.024502[10] Xu Z, Liu B, Chen Y F, et al. The improvement of nitrogen doped Ge2Sb2Te5 on the phase change memory resistance distributions. Solid-State Electron, 2016, 116, 119 doi: 10.1016/j.sse.2015.11.001[11] Johnson W A, Mehl R F. Reaction kinetics in processes of nucleation and growth. Trans Metall Soc AIME, 1939, 135, 416[12] Volmer M, Weber A. Keimbildung in übersättigten Gebilden. Zeitschrift für physikalische Chemie, 1926, 119, 227 doi: 10.1515/zpch-1926-11927[13] Senkader S, Wright C D. Models for phase-change of Ge2Sb2Te5 in optical and electrical memory devices. J Appl Phys Lett, 2004, 95(2), 504 doi: 10.1063/1.1633984[14] Bae J H, Kim B G, Byeon D S, et al. Simulation for thickness change of PRAM recording layer. J Ceram Soc Jpn, 2009, 117(5), 588 doi: 10.2109/jcersj2.117.588[15] Gong Y F, Song Z T, Ling Y, et al. Simulation of voltage SET operation in phase-change random access memories with heater addition and ring-type contactor for low-power consumption by finite element modeling. Chin Phys Lett, 2010, 27, 068501 doi: 10.1088/0256-307X/27/6/068501 -
Proportional views