Citation: |
Jiajing Yin, Yurun Sun, Shuzhen Yu, Yongming Zhao, Rongwei Li, Jianrong Dong. 1064 nm InGaAsP multi-junction laser power converters[J]. Journal of Semiconductors, 2020, 41(6): 062303. doi: 10.1088/1674-4926/41/6/062303
****
J J Yin, Y R Sun, S Z Yu, Y M Zhao, R W Li, J R Dong, 1064 nm InGaAsP multi-junction laser power converters[J]. J. Semicond., 2020, 41(6): 062303. doi: 10.1088/1674-4926/41/6/062303.
|
1064 nm InGaAsP multi-junction laser power converters
DOI: 10.1088/1674-4926/41/6/062303
More Information
-
Abstract
Laser photovoltaic devices converting 1064 nm light energy into electric energy present a promising prospect in wireless energy transmission due to the commercial availability of high power 1064 nm lasers with very small divergence. Besides their high conversion efficiency, a high output voltage is also expected in a laser energy transmission system. Meanwhile, 1064 nm InGaAsP multi-junction laser power converters have been developed using p+-InGaAs/n+-InGaAs tunnel junctions to connect sub-cells in series to obtain a high output voltage. The triple-junction laser power converter structures are grown on p-type InP substrates by metal-organic chemical vapor deposition (MOCVD), and InGaAsP laser power converters are fabricated by conventional photovoltaic device processing. The room-temperature I–V measurements show that the 1 × 1 cm2 triple-junction InGaAsP laser power converters demonstrate a conversion efficiency of 32.6% at a power density of 1.1 W/cm2, with an open-circuit voltage of 2.16 V and a fill factor of 0.74. In this paper, the characteristics of the laser power converters are analyzed and ways to improve the conversion efficiency are discussed. -
References
[1] Fave A, Kaminski A, Gavand M, et al. GaAs converter for high power laser diode. 25th IEEE Photovoltaic Specialists Conference, 1996, 101[2] Oliva E, Dimroth F, Bett A W. GaAs converters for high power densities of laserillumination. Prog Photovolt: Res Appl, 2008, 16(4), 289 doi: 10.1002/pip.811[3] Andreev V, Khvostikov V, Kalinovsky V, et al. High current density GaAs and GaSb photovoltaic cells for laser power beaming. IEEE World Conference on Photovoltaic Energy Conversion, 2003, 761[4] Fafard S, Proulx F, York M C A, et al. High-photovoltage GaAs vertical epitaxial monolithic heterostructures with 20 thin p/n junctions and a conversion efficiency of 60%. Appl Phys Lett, 2016, 109, 131107 doi: 10.1063/1.4964120[5] Khvostikov V, Sorokina S, Potapovich N, et al. AlGaAs converters and arrays for laser power beaming. AIP Conference Proceedings, 2015, 1679(1), 130002[6] Valdivia C E, Wilkins M M, Bouzazi B, et al. Five-volt vertically-stacked, single-cell GaAs photonic power converter. Physics, Simulation, Photonic Eng Photovolt Devices IV, 2015, 9358, 93580E[7] Safard S, York M C A, Proulx F, et al. Ultrahigh efficiencies in vertical epitaxial heterostructure architectures. Appl Phys Lett, 2016, 108(7), 071101 doi: 10.1063/1.4941240[8] Green M A, Zhao J, Wang A, et al. 45 % efficient silicon photovoltaic cell under monochromatic light. IEEE Electron Device Lett, 1992, 13(6), 317 doi: 10.1109/55.145070[9] Khvostikov V P, Sorokina S V, Potapovich N S, et al. GaInAsP/InP-based laser power converters (λ = 1064 nm). Semiconductors, 2018, 52(13), 1748 doi: 10.1134/S1063782618130079[10] Singh N, Ho C K F, Leong Y N, et al. InAlGaAs/InP-based laser photovoltaic converter at ~1070 nm. IEEE Electron Device Lett, 2016, 37(9), 1154 doi: 10.1109/LED.2016.2591015[11] Mintairov S A, Emelyanov V M, Rybalchenko D V, et al. Heterostructures of metamorphic GaInAs photovoltaic converters fabricated by MOCVD on GaAs substrates. Semiconductors, 2016, 50(4), 517 doi: 10.1134/S1063782616040163[12] Rybalchenko D V, Mintairov S A, Salii R A, et al. Metamorphic InGaAs photo-converters on GaAs substrates. J Phys: Conf Ser, 2016, 690(1), 012032 doi: 10.1088/1742-6596/690/1/012032[13] Rybalchenko D V, Mintairov S A, Salii R A, et al. Optimization of structural and growth parameters of metamorphic InGaAs photovoltaic converters grown by MOCVD. Semiconductors, 2017, 51(1), 93 doi: 10.1134/S1063782617010201[14] Kaluzhnyy N A, Mintaiov S A, Nadtochiy A M, et al. InGaAs metamorphic laser (1064 nm) power converters with over 40% efficiency. Electron Lett, 2017, 53(3), 173 doi: 10.1049/el.2016.4308[15] Kim Y, Shin H B, Lee W H, et al. 1080 nm InGaAs laser power converters grown by MOCVD using InAlGaAs metamorphic buffer layers. Sol Energy Mater Sol Cells, 2019, 200, 109984 doi: 10.1016/j.solmat.2019.109984[16] Peña R, Algora C. One-watt fiber-based power-by-light system for satellite applications. Prog Photovolt: Res Appl, 2012, 20(1), 117 doi: 10.1002/pip.1130[17] Pena R, Algora C. The influence of monolithic series connection on the efficiency of GaAs photovoltaic converters for monochromatic illumination. IEEE Trans Electron Devices, 2001, 48(2), 196 doi: 10.1109/16.902716[18] Guan C G, Liu W, Gao Q. Influence of the mesa electrode position on monolithic on-chip series-interconnect GaAs laser power converter performance. Mater Sci Semicond Process, 2018, 75, 136 doi: 10.1016/j.mssp.2017.11.027[19] Schubert J, Oliva E, Dimroth F. High-voltage GaAs photovoltaic laser power converters. IEEE Trans Electron Devices, 2009, 56(2), 170 doi: 10.1109/TED.2008.2010603[20] Masson D, Proulx F, Fafard S. Pushing the limits of concentrated photovoltaic solar cell tunnel junctions in novel high-efficiency GaAs phototransducers based on a vertical epitaxial heterostructure architecture. Prog Photovolts: Res Appl, 2015, 239(12), 1687 doi: 10.1002/pip.2709[21] York M C A, Proulx F, Masson D P, et al. Thin n/p GaAs junctions for novel high-efficiency phototransducers based on a vertical epitaxial heterostructure architecture. MRS Adv, 2016, 1(14), 881 doi: 10.1557/adv.2016.9[22] Fafard S, Proulx F, York M C A, et al. Advances with vertical epitaxial heterostructure architecture (VEHSA) phototransducers for optical to electrical power conversion efficiencies exceeding 50 percent. Physics Simulation Photonic Eng Photovolt Devices V, 2016, 9743, 974304 doi: 10.1117/12.2218486[23] Proulx F, York M C A, Provost P O, et al. Measurement of strong photon recycling in ultra-thin GaAs n/p junctions monolithically integrated in high-photovoltage vertical epitaxial heterostructure architectures with conversion efficiencies exceeding 60%. Phys Status Solidi-Rapid Res Lett, 2017, 11(2), 1600385 doi: 10.1002/pssr.201600385[24] Burkhard H, Dinges H W, Kuphal E. Optical properties of In1– xGaxP1– yAsy, InP, GaAs, and GaP determined by ellipsometry. J Appl Phys, 1982, 53(1), 655 doi: 10.1063/1.329973 -
Proportional views