J. Semicond. > 2021, Volume 42 > Issue 1 > 010502

SHORT COMMUNICATION

D18, an eximious solar polymer!

Ke Jin, Zuo Xiao and Liming Ding

+ Author Affiliations

 Corresponding author: Z Xiao, xiaoz@nanoctr.cn; L Ding, ding@nanoctr.cn

DOI: 10.1088/1674-4926/42/1/010502

PDF

Turn off MathJax

Organic solar cell (OSC) is a promising photovoltaic technology with great commercialization potential due to the advantages like solution-processing, roll-to-roll fabrication, lightweight, flexibility, and semitransparency[1-7]. Conjugated polymer donors are key materials for OSCs[8]. Their functions include harvesting photons, constructing a 3D interpenetrating network in the active layer for efficient exciton dissociation, and transporting holes to the anode[9-11]. Copolymers containing fused-ring acceptor units (i.e. electron-accepting building blocks) are the most efficient type of donors for OSCs. The copolymer donors, such as Li’s J71[12] and PTQ10[13], Hou’s PBDB-T[14], PM6[15] and PM7[16], Sun’s PDBT-T1[17] and PBT1-C[18], Yu’s PTB7[19], Chen’s PTB7-Th[20], You’s FTAZ[21], Janssen’s PDPP3T[22], Yan’s PffBT4T-C9C13[23], Huang’s NT812[24] and P2F-EHp[25], Ding’s D18[26] and D18-Cl[27], all contain fused-ring acceptor units. The merits for fused-ring acceptor units are prominent: 1) the strong electron-withdrawing capability of these units gifts polymers deep HOMO (the highest occupied molecular orbital) levels, leading to high open-circuit voltage (Voc); 2) the rigid and extended molecular planes of these units gift polymers enhanced π–π stacking and good hole mobility, leading to high short-circuit current density (Jsc) and fill factor (FF). In the past decade, our group has been developing fused-ring-acceptor-unit-based polymer donors (Fig. 1).

Figure  1.  (Color online) Polymer donors with fused-ring acceptor units developed in Ding’s lab.

Fused-ring ketones are frequently-used acceptor units for polymer donors due to their strong electron-withdrawing property. In 2012, we reported donor–acceptor (D–A) copolymers P1[28] and P2[29] based on thiophene-fused ketone units benzo[1,2-b:4,5-c′]-dithiophene-4,8-dione and cyclopenta[2,1-b:3,4-c′]dithiophene-4-one, respectively. 4.33% and 2.20% PCEs were obtained from P1:PC61BM and P2:PC71BM solar cells, respectively. Fused-ring lactams are another important building blocks. The lactam moieties endow the unit with electron affinity and offer the sites for introducing alkyl chains to guarantee good solubility. In 2013, we first reported pentacyclic aromatic bislactam unit TPTI[30]. By copolymerizing TPTI with a thiophene unit, we got a donor PThTPTI. PThTPTI:PC71BM solar cells gave a PCE of 7.80% with a high Voc of 0.87 V. PThTPTI was among the best polymer donors at that time. Following this work, we designed a hexacyclic bislactam unit TD2 and used it to construct a selenophene-containing copolymer donor PSeTD2 in 2015[31]. Inverted PSeTD2:PC71BM solar cells offered a PCE of 8.18%, which was a record for D–A copolymers with selenophene as the donor unit. Later on, we designed a bislactam unit BDTP[32]. The structure of BDTP can be viewed as dividing TD2 into two tricyclic dithieno[3,2-b:2′,3′-d]pyridin-5(4H)-one (DTP) units and connecting them with a single bond. The D–A copolymer PThBDTP based on BDTP exhibited deep HOMO levels, good hole mobility and excellent performance in solar cells when blending with PC71BM. PThBDTP:PC71BM solar cells gave a PCE of 9.13% with a Voc of 0.96 V. PThBDTP was one of the few D–A copolymers with PCEs of over 9% at that time. After this work, we considered the tricyclic lactam DTP could be a useful building block for copolymer donors. In 2017, we reported a low-bandgap copolymer PDTP4TFBT based on DTP[33]. PDTP4TFBT is compatible not only with fullerene acceptors but also with nonfullerene acceptors. Blending PDTP4TFBT with the fullerene acceptor PC71BM or the nonfullerene acceptor ITIC[34] yielded 8.75% and 7.58% PCEs, respectively. The ternary cells based on PDTP4TFBT:PC71BM:ITIC (1 : 1.2 : 0.3) delivered a PCE of 9.20%. In 2018, we designed an analogue of DTP, thieno[3,2-c]isoquinolin-5(4H)-one (TIQ), by replacing one thiophene of DTP with a benzene[35]. TIQ-based D–A copolymer PTIQ4TFBT has a high hole mobility of 1.33 × 10–3 cm2 V–1 s–1 and gave a PCE of 10.16% in polymer:fullerene solar cells with an active layer thickness of 267 nm. Moreover, the thick-film PTIQ4TFBT solar cells kept over 8% PCE with active layer thickness over 500 nm. Regarding the rapid advance of nonfullerene acceptors in recent years, developing efficient donors matching nonfullerene acceptors became an imperative mission. Thus, we started focusing on the development of nonfullerene-acceptor-compatible polymer donors. In 2019, we reported a wide-bandgap copolymer PBD2T based on DTP[36]. Solar cells based on PBD2T and a nonfullerene acceptor IT-M[37] afforded PCEs up to 10.34%. The good performance of PBD2T stimulated our exploration for other fused-ring-acceptor-unit-based polymer donors. In the same year, we first reported the fused-ring-lactone-based polymer donors[38]. Thanks to the strong electron-withdrawing capability and rigid molecular plane of the tricyclic lactone unit 5H-dithieno[3,2-b:2′,3′-d]pyran-5-one, the resulting polymer L1 presents a deep HOMO level and good mobility. Inverted solar cells based on L1 and a nonfullerene acceptor Y6[39] gave PCEs up to 14.36%. Later on, we designed the tricyclic thiolactone unit 5H-dithieno[3,2-b:2′,3′-d]thiopyran-5-one (DTTP), and used it to synthesize the copolymer D16[40]. From L1 to D16, the simple replacement of lactone with thiolactone improves polymer π–π stacking. D16:Y6 solar cells gave PCEs up to 16.72% (certified 16.0%). In 2020, we designed copolymer D18 by using a fused-ring thiadiazole unit dithieno[3′,2′:3,4;2′′,3′′:5,6]benzo[1,2-c][1,2,5]thiadiazole (DTBT)[26]. Compared with DTTP, DTBT has a larger molecular plane and gifts D18 a high hole mobility of 1.59 × 10–3 cm2 V–1 s–1. D18:Y6 solar cells demonstrated an outstanding PCE of 18.22% (certified 17.6%), which was the highest efficiency for OSCs at that time. Recently, we reported a chlorinated analogue of D18, the D18-Cl[27]. D18-Cl also showed high performance in solar cells. Blending D18-Cl with a nonfullerene acceptor N3[41] yielded a PCE of 18.13% (certified 17.6%), demonstrating the great potential of cost-effective chlorinated polymer donors in OSCs. We also tried other fused-ring acceptor units with larger molecular planes to make polymer donors. In 2020, we reported a donor P3 based on a fused-ring phenazine unit 9,10-difluorodithieno[3,2-a:2′,3′-c]phenazine (FDTPz)[42]. P3:Y6 solar cells gave PCEs up to 15.14%, which is the highest efficiency from phenazine-based donors to date. In the same year, we reported polymer donors P4 and P5 based on two novel pentacyclic bislactone units, BL1 and BL2[43]. Compared with previous lactone units, BL1 and BL2 have stronger electron-withdrawing capability and gift P4 and P5 deeper HOMO levels. P4:IT-4F and P5:IT-4F solar cells gave high Vocs of 0.96 and 0.94 V, respectively, and PCEs of 10.44% and 7.31%, respectively.

Among all the polymer donors invented in our lab, D18 exhibited high hole mobility and outstanding performance. The grazing-incidence wide-angle X-ray scattering (GIWAXS) for D18 neat film or blend film shows distinct (001) and (002) diffraction peaks[44]. Besides common π–π stacking and lamellar stacking ordering, D18 also shows unusually strong backbone direction ordering. This may explain its excellent hole mobility and photovoltaic performance. The high hole mobility of D18 suggests that it could be applied in thick-film solar cells. Recently, we made thick-film solar cells by adding small amount of PC61BM into the D18:Y6 blend[45]. D18:Y6:PC61BM (1 : 1.6 : 0.2) solar cells afforded a PCE of 17.89% (certified 17.4%) at the thickness of 110 nm, and offered 16.32% and 16.19% PCEs at the thickness of 300 and 350 nm, respectively. To the best of our knowledge, this is the first report that OSCs gave over 16% PCEs with active layer thickness over 300 nm. To further explore the potential of D18, we screened a series of nonfullerene acceptors and found that N3 is a good partner for D18. The solar cells with a structure of ITO/PEDOT:PSS/D18:N3/PDIN/Ag delivered a PCE of 18.56%, with a Voc of 0.862 V, a Jsc of 27.44 mA cm–2 and a FF of 78.5% (Fig. S1), setting a new world record of PCE for organic solar cells. These cells have a D/A ratio of 1 : 1.6 (w/w), an active layer thickness of 121 nm and 0.15 vol% 1-chloronaphthalene (CN) as the additive (Tables S1–S3). D18:N3 solar cells presented >80% EQE at 450–810 nm, showing a maximum of 89% at 540 nm (Fig. S2). The integrated current density for D18:N3 solar cells is 26.61 mA cm –2. The best D18:N3 solar cells were also measured at the National Institute of Metrology (NIM) (Beijing), and a certified PCE of 17.9% was recorded (Voc, 0.850 V; Jsc, 26.71 mA cm–2; FF, 78.9%; effective area, 2.580 mm2) (Fig. 2).

Figure  2.  NIM (Beijing) report for D18:N3 solar cells.

Since 2010, we have been devoting our efforts in inventing fused-ring-acceptor-unit-based copolymer donors. Some copolymer donors present high performance not only in fullerene-acceptor-based solar cells but also in nonfullerene-acceptor-based solar cells. Among them, D18 demonstrates the highest PCE (18.56%) in OSCs. We are expecting that more innovative building blocks will be synthesized, and we believe more high-performance donors and acceptors are coming. With the innovative contribution and synergetic efforts from OSC community, OSC products will eventually go to market.

We thank the National Key Research and Development Program of China (2017YFA0206600), the National Natural Science Foundation of China (51773045, 21772030, 51922032 and 21961160720) and the Youth Association for Promoting Innovation (CAS) for financial support.

Supplementary materials to this article can be found online at https://doi.org/1674-4926/42/1/010502https://doi.org/1674-4926/42/1/010502.



[1]
Tong Y, Xiao Z, Du X, et al. Progress of the key materials for organic solar cells. Sci China Chem, 2020, 63, 758 doi: 10.1007/s11426-020-9726-0
[2]
Tong Y, Xiao Z, Du X, et al. Progress of the key materials for organic solar cells. Sci Sin Chim, 2020, 50, 437 doi: 10.1360/SSC-2020-0018
[3]
Duan C, Ding L. The new era for organic solar cells: non-fullerene small molecular acceptors. Sci Bull, 2020, 65, 1231 doi: 10.1016/j.scib.2020.04.030
[4]
Duan C, Ding L. The new era for organic solar cells: polymer donors. Sci Bull, 2020, 65, 1422 doi: 10.1016/j.scib.2020.04.044
[5]
Duan C, Ding L. The new era for organic solar cells: polymer acceptors. Sci Bull, 2020, 65, 1508 doi: 10.1016/j.scib.2020.05.023
[6]
Duan C, Ding L. The new era for organic solar cells: small molecular donors. Sci Bull, 2020, 65, 1597 doi: 10.1016/j.scib.2020.05.019
[7]
Zhang Y, Duan C, Ding L. Indoor organic photovoltaics. Sci Bull, 2020, 65, 2040 doi: 10.1016/j.scib.2020.08.030
[8]
Wu J, Cheng S, Cheng Y, et al. Donor-acceptor conjugated polymers based on multifused ladder-type arenes for organic solar cells. Chem Soc Rev, 2015, 44, 1113 doi: 10.1039/C4CS00250D
[9]
Müllen K, Pisula W. Donor-acceptor polymers. J Am Chem Soc, 2015, 137, 9503 doi: 10.1021/jacs.5b07015
[10]
Zhou H, Yang L, You W. Rational design of high performance conjugated polymers for organic solar cells. Macromolecules, 2012, 45, 607 doi: 10.1021/ma201648t
[11]
Yu G, Gao J, Hummelen J C. Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science, 1995, 270, 1789 doi: 10.1126/science.270.5243.1789
[12]
Bin H, Gao L, Zhang Z G, et al. 11.4% efficiency non-fullerene polymer solar cells with trialkylsilyl substituted 2D-conjugated polymer as donor. Nat Commun, 2016, 7, 13651 doi: 10.1038/ncomms13651
[13]
Sun C, Pan F, Bin H, et al. A low cost and high performance polymer donor material for polymer solar cells. Nat Commun, 2018, 9, 743 doi: 10.1038/s41467-018-03207-x
[14]
Qian D, Ye L, Zhang M, et al. Design, application, and morphology study of a new photovoltaic polymer with strong aggregation in solution state. Macromolecules, 2012, 45, 9611 doi: 10.1021/ma301900h
[15]
Zhang M, Guo X, Ma W, et al. A large-bandgap conjugated polymer for versatile photovoltaic applications with high performance. Adv Mater, 2015, 27, 4655 doi: 10.1002/adma.201502110
[16]
Zhang S, Qin Y, Zhu J, et al. Over 14% efficiency in polymer solar cells enabled by a chlorinated polymer donor. Adv Mater, 2018, 30, 1800868 doi: 10.1002/adma.201800868
[17]
Huo L, Liu T, Sun X, et al. Single-junction organic solar cells based on a novel wide-bandgap polymer with efficiency of 9.7%. Adv Mater, 2015, 27, 2938 doi: 10.1002/adma.201500647
[18]
Liu T, Huo L, Chandrabose S, et al. Optimized fibril network morphology by precise side-chain engineering to achieve high-performance bulk-heterojunction organic solar cells. Adv Mater, 2018, 30, 1707353 doi: 10.1002/adma.201707353
[19]
Liang Y, Xu Z, Xia J, et al. For the bright future-bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%. Adv Mater, 2010, 22, E135 doi: 10.1002/adma.200903528
[20]
Liao S H, Jhuo H J, Cheng Y S, et al. Fullerene derivative-doped zinc oxide nanofilm as the cathode of inverted polymer solar cells with low-bandgap polymer (PTB7-Th) for high performance. Adv Mater, 2013, 25, 4766 doi: 10.1002/adma.201301476
[21]
Price S C, Stuart A C, Yang L, et al. Fluorine substituted conjugated polymer of medium band gap yields 7% efficiency in polymer-fullerene solar cells. J Am Chem Soc, 2011, 133, 4625 doi: 10.1021/ja1112595
[22]
Hendriks K H, Heintges G H L, Gevaerts V S, et al. High-molecular-weight regular alternating diketopyrrolopyrrole-based terpolymers for efficient organic solar cells. Angew Chem, 2013, 125, 8499 doi: 10.1002/ange.201302319
[23]
Zhao J, Li Y, Yang G, et al. Efficient organic solar cells processed from hydrocarbon solvents. Nat Energy, 2016, 1, 15027 doi: 10.1038/nenergy.2015.27
[24]
Jin Y, Chen Z, Dong S, et al. A novel naphtho[1,2-c:5,6-c']bis([1,2,5]thiadiazole)-based narrow-bandgap π-conjugated polymer with power conversion efficiency over 10%. Adv Mater, 2016, 28, 9811 doi: 10.1002/adma.201603178
[25]
Fan B, Zhang D, Li M, et al. Achieving over 16% efficiency for single-junction organic solar cells. Sci China Chem, 2019, 62, 746 doi: 10.1007/s11426-019-9457-5
[26]
Liu Q, Jiang Y, Jin K, et al. 18% efficiency organic solar cells. Sci Bull, 2020, 65, 272 doi: 10.1016/j.scib.2020.01.001
[27]
Qin J, Zhang L, Zuo C, et al. A chlorinated copolymer donor demonstrates a 18.13% power conversion efficiency. J Semicond, 2021, 42, 010501 doi: 10.1088/1674-4926/42/1/010501
[28]
Cao J, Zhang W, Xiao Z, et al. Synthesis and photovoltaic properties of low band gap polymers containing benzo[1,2-b:4,5-c′]dithiophene-4,8-dione. Macromolecules, 2012, 45, 1710 doi: 10.1021/ma202578y
[29]
Zhang W, Cao J, Liu Y, et al. Using cyclopenta[2,1-b:3,4-c']dithiophene-4-one as a building block for low-bandgap conjugated copolymers applied in solar cells. Macromol Rapid Commun, 2012, 33, 1574 doi: 10.1002/marc.201200311
[30]
Cao J, Liao Q, Du X, et al. A pentacyclic aromatic lactam building block for efficient polymer solar cells. Energy Environ Sci, 2013, 6, 3224 doi: 10.1039/c3ee41948g
[31]
Cao J, Zuo C, Du B, et al. Hexacyclic lactam building blocks for highly efficient polymer solar cells. Chem Commun, 2015, 51, 12122 doi: 10.1039/C5CC04375A
[32]
Cao J, Qian L, Lu F, et al. A lactam building block for efficient polymer solar cells. Chem Commun, 2015, 51, 11830 doi: 10.1039/C5CC03620H
[33]
An M, Xie F, Geng X, et al. A high-performance D-A copolymer based on dithieno[3,2-b:2′,3′-d]pyridin-5(4H)-one unit compatible with fullerene and nonfullerene acceptors in solar cells. Adv Energy Mater, 2017, 7, 1602509 doi: 10.1002/aenm.201602509
[34]
Lin Y, Wang J, Zhang Z G, et al. An electron acceptor challenging fullerenes for efficient polymer solar cells. Adv Mater, 2015, 27, 1170 doi: 10.1002/adma.201404317
[35]
Li D, Xiao Z, Wang S, et al. A thieno[3,2-c]isoquinolin-5(4H)-one building block for efficient thick-film solar cells. Adv Energy Mater, 2018, 8, 1800397 doi: 10.1002/aenm.201800397
[36]
Gao Y, Li D, Xiao Z, et al. High-performance wide-bandgap copolymers with dithieno[3,2-b:2′,3′-d]pyridin-5(4H)-one units. Mater Chem Front, 2019, 3, 399 doi: 10.1039/C8QM00604K
[37]
Li S, Ye L, Zhao W, et al. Energy-level modulation of small-molecule electron acceptors to achieve over 12% efficiency in polymer solar cells. Adv Mater, 2016, 28, 9423 doi: 10.1002/adma.201602776
[38]
Liu J, Liu L, Zuo C, et al. 5H-dithieno[3,2-b:2′,3′-d]pyran-5-one unit yields efficient wide-bandgap polymer donors. Sci Bull, 2019, 64, 1655 doi: 10.1016/j.scib.2019.09.001
[39]
Yuan J, Zhang Y, Zhou L, et al. Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule, 2019, 3, 1140 doi: 10.1016/j.joule.2019.01.004
[40]
Xiong J, Jin K, Jiang Y, et al. Thiolactone copolymer donor gifts organic solar cells a 16.72% efficiency. Sci Bull, 2019, 64, 1573 doi: 10.1016/j.scib.2019.10.002
[41]
Jiang K, Wei Q, Lai J Y L, et al. Alkyl chain tuning of small molecule acceptors for efficient organic solar cells. Joule, 2019, 3, 3020 doi: 10.1016/j.joule.2019.09.010
[42]
Li W, Liu Q, Jin K, et al. Fused-ring phenazine building blocks for efficient copolymer donors. Mater Chem Front, 2020, 4, 1454 doi: 10.1039/D0QM00080A
[43]
Xiong J, Xu J, Jiang Y, et al. Fused-ring bislactone building blocks for polymer donors. Sci Bull, 2020, 65, 1792 doi: 10.1016/j.scib.2020.07.018
[44]
Wang Z, Peng Z, Xiao Z, et al. Thermodynamic properties and molecular packing explain performance and processing procedures of three D18:NFA organic solar cells. Adv Mater, 2020, 32, 2005386 doi: 10.1002/adma.202005386
[45]
Qin J, Zhang L, Xiao Z, et al. Over 16% efficiency from thick-film organic solar cells. Sci Bull, 2020, 65, 1979 doi: 10.1016/j.scib.2020.08.027
Fig. 1.  (Color online) Polymer donors with fused-ring acceptor units developed in Ding’s lab.

Fig. 2.  NIM (Beijing) report for D18:N3 solar cells.

[1]
Tong Y, Xiao Z, Du X, et al. Progress of the key materials for organic solar cells. Sci China Chem, 2020, 63, 758 doi: 10.1007/s11426-020-9726-0
[2]
Tong Y, Xiao Z, Du X, et al. Progress of the key materials for organic solar cells. Sci Sin Chim, 2020, 50, 437 doi: 10.1360/SSC-2020-0018
[3]
Duan C, Ding L. The new era for organic solar cells: non-fullerene small molecular acceptors. Sci Bull, 2020, 65, 1231 doi: 10.1016/j.scib.2020.04.030
[4]
Duan C, Ding L. The new era for organic solar cells: polymer donors. Sci Bull, 2020, 65, 1422 doi: 10.1016/j.scib.2020.04.044
[5]
Duan C, Ding L. The new era for organic solar cells: polymer acceptors. Sci Bull, 2020, 65, 1508 doi: 10.1016/j.scib.2020.05.023
[6]
Duan C, Ding L. The new era for organic solar cells: small molecular donors. Sci Bull, 2020, 65, 1597 doi: 10.1016/j.scib.2020.05.019
[7]
Zhang Y, Duan C, Ding L. Indoor organic photovoltaics. Sci Bull, 2020, 65, 2040 doi: 10.1016/j.scib.2020.08.030
[8]
Wu J, Cheng S, Cheng Y, et al. Donor-acceptor conjugated polymers based on multifused ladder-type arenes for organic solar cells. Chem Soc Rev, 2015, 44, 1113 doi: 10.1039/C4CS00250D
[9]
Müllen K, Pisula W. Donor-acceptor polymers. J Am Chem Soc, 2015, 137, 9503 doi: 10.1021/jacs.5b07015
[10]
Zhou H, Yang L, You W. Rational design of high performance conjugated polymers for organic solar cells. Macromolecules, 2012, 45, 607 doi: 10.1021/ma201648t
[11]
Yu G, Gao J, Hummelen J C. Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science, 1995, 270, 1789 doi: 10.1126/science.270.5243.1789
[12]
Bin H, Gao L, Zhang Z G, et al. 11.4% efficiency non-fullerene polymer solar cells with trialkylsilyl substituted 2D-conjugated polymer as donor. Nat Commun, 2016, 7, 13651 doi: 10.1038/ncomms13651
[13]
Sun C, Pan F, Bin H, et al. A low cost and high performance polymer donor material for polymer solar cells. Nat Commun, 2018, 9, 743 doi: 10.1038/s41467-018-03207-x
[14]
Qian D, Ye L, Zhang M, et al. Design, application, and morphology study of a new photovoltaic polymer with strong aggregation in solution state. Macromolecules, 2012, 45, 9611 doi: 10.1021/ma301900h
[15]
Zhang M, Guo X, Ma W, et al. A large-bandgap conjugated polymer for versatile photovoltaic applications with high performance. Adv Mater, 2015, 27, 4655 doi: 10.1002/adma.201502110
[16]
Zhang S, Qin Y, Zhu J, et al. Over 14% efficiency in polymer solar cells enabled by a chlorinated polymer donor. Adv Mater, 2018, 30, 1800868 doi: 10.1002/adma.201800868
[17]
Huo L, Liu T, Sun X, et al. Single-junction organic solar cells based on a novel wide-bandgap polymer with efficiency of 9.7%. Adv Mater, 2015, 27, 2938 doi: 10.1002/adma.201500647
[18]
Liu T, Huo L, Chandrabose S, et al. Optimized fibril network morphology by precise side-chain engineering to achieve high-performance bulk-heterojunction organic solar cells. Adv Mater, 2018, 30, 1707353 doi: 10.1002/adma.201707353
[19]
Liang Y, Xu Z, Xia J, et al. For the bright future-bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%. Adv Mater, 2010, 22, E135 doi: 10.1002/adma.200903528
[20]
Liao S H, Jhuo H J, Cheng Y S, et al. Fullerene derivative-doped zinc oxide nanofilm as the cathode of inverted polymer solar cells with low-bandgap polymer (PTB7-Th) for high performance. Adv Mater, 2013, 25, 4766 doi: 10.1002/adma.201301476
[21]
Price S C, Stuart A C, Yang L, et al. Fluorine substituted conjugated polymer of medium band gap yields 7% efficiency in polymer-fullerene solar cells. J Am Chem Soc, 2011, 133, 4625 doi: 10.1021/ja1112595
[22]
Hendriks K H, Heintges G H L, Gevaerts V S, et al. High-molecular-weight regular alternating diketopyrrolopyrrole-based terpolymers for efficient organic solar cells. Angew Chem, 2013, 125, 8499 doi: 10.1002/ange.201302319
[23]
Zhao J, Li Y, Yang G, et al. Efficient organic solar cells processed from hydrocarbon solvents. Nat Energy, 2016, 1, 15027 doi: 10.1038/nenergy.2015.27
[24]
Jin Y, Chen Z, Dong S, et al. A novel naphtho[1,2-c:5,6-c']bis([1,2,5]thiadiazole)-based narrow-bandgap π-conjugated polymer with power conversion efficiency over 10%. Adv Mater, 2016, 28, 9811 doi: 10.1002/adma.201603178
[25]
Fan B, Zhang D, Li M, et al. Achieving over 16% efficiency for single-junction organic solar cells. Sci China Chem, 2019, 62, 746 doi: 10.1007/s11426-019-9457-5
[26]
Liu Q, Jiang Y, Jin K, et al. 18% efficiency organic solar cells. Sci Bull, 2020, 65, 272 doi: 10.1016/j.scib.2020.01.001
[27]
Qin J, Zhang L, Zuo C, et al. A chlorinated copolymer donor demonstrates a 18.13% power conversion efficiency. J Semicond, 2021, 42, 010501 doi: 10.1088/1674-4926/42/1/010501
[28]
Cao J, Zhang W, Xiao Z, et al. Synthesis and photovoltaic properties of low band gap polymers containing benzo[1,2-b:4,5-c′]dithiophene-4,8-dione. Macromolecules, 2012, 45, 1710 doi: 10.1021/ma202578y
[29]
Zhang W, Cao J, Liu Y, et al. Using cyclopenta[2,1-b:3,4-c']dithiophene-4-one as a building block for low-bandgap conjugated copolymers applied in solar cells. Macromol Rapid Commun, 2012, 33, 1574 doi: 10.1002/marc.201200311
[30]
Cao J, Liao Q, Du X, et al. A pentacyclic aromatic lactam building block for efficient polymer solar cells. Energy Environ Sci, 2013, 6, 3224 doi: 10.1039/c3ee41948g
[31]
Cao J, Zuo C, Du B, et al. Hexacyclic lactam building blocks for highly efficient polymer solar cells. Chem Commun, 2015, 51, 12122 doi: 10.1039/C5CC04375A
[32]
Cao J, Qian L, Lu F, et al. A lactam building block for efficient polymer solar cells. Chem Commun, 2015, 51, 11830 doi: 10.1039/C5CC03620H
[33]
An M, Xie F, Geng X, et al. A high-performance D-A copolymer based on dithieno[3,2-b:2′,3′-d]pyridin-5(4H)-one unit compatible with fullerene and nonfullerene acceptors in solar cells. Adv Energy Mater, 2017, 7, 1602509 doi: 10.1002/aenm.201602509
[34]
Lin Y, Wang J, Zhang Z G, et al. An electron acceptor challenging fullerenes for efficient polymer solar cells. Adv Mater, 2015, 27, 1170 doi: 10.1002/adma.201404317
[35]
Li D, Xiao Z, Wang S, et al. A thieno[3,2-c]isoquinolin-5(4H)-one building block for efficient thick-film solar cells. Adv Energy Mater, 2018, 8, 1800397 doi: 10.1002/aenm.201800397
[36]
Gao Y, Li D, Xiao Z, et al. High-performance wide-bandgap copolymers with dithieno[3,2-b:2′,3′-d]pyridin-5(4H)-one units. Mater Chem Front, 2019, 3, 399 doi: 10.1039/C8QM00604K
[37]
Li S, Ye L, Zhao W, et al. Energy-level modulation of small-molecule electron acceptors to achieve over 12% efficiency in polymer solar cells. Adv Mater, 2016, 28, 9423 doi: 10.1002/adma.201602776
[38]
Liu J, Liu L, Zuo C, et al. 5H-dithieno[3,2-b:2′,3′-d]pyran-5-one unit yields efficient wide-bandgap polymer donors. Sci Bull, 2019, 64, 1655 doi: 10.1016/j.scib.2019.09.001
[39]
Yuan J, Zhang Y, Zhou L, et al. Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule, 2019, 3, 1140 doi: 10.1016/j.joule.2019.01.004
[40]
Xiong J, Jin K, Jiang Y, et al. Thiolactone copolymer donor gifts organic solar cells a 16.72% efficiency. Sci Bull, 2019, 64, 1573 doi: 10.1016/j.scib.2019.10.002
[41]
Jiang K, Wei Q, Lai J Y L, et al. Alkyl chain tuning of small molecule acceptors for efficient organic solar cells. Joule, 2019, 3, 3020 doi: 10.1016/j.joule.2019.09.010
[42]
Li W, Liu Q, Jin K, et al. Fused-ring phenazine building blocks for efficient copolymer donors. Mater Chem Front, 2020, 4, 1454 doi: 10.1039/D0QM00080A
[43]
Xiong J, Xu J, Jiang Y, et al. Fused-ring bislactone building blocks for polymer donors. Sci Bull, 2020, 65, 1792 doi: 10.1016/j.scib.2020.07.018
[44]
Wang Z, Peng Z, Xiao Z, et al. Thermodynamic properties and molecular packing explain performance and processing procedures of three D18:NFA organic solar cells. Adv Mater, 2020, 32, 2005386 doi: 10.1002/adma.202005386
[45]
Qin J, Zhang L, Xiao Z, et al. Over 16% efficiency from thick-film organic solar cells. Sci Bull, 2020, 65, 1979 doi: 10.1016/j.scib.2020.08.027

20120028suppl.pdf

1

Organic solar cells with D18 or derivatives offer efficiency over 19%

Erming Feng, Chujun Zhang, Jianhui Chang, Hengyue Li, Liming Ding, et al.

Journal of Semiconductors, 2024, 45(5): 050201. doi: 10.1088/1674-4926/45/5/050201

2

n-Type acceptor–acceptor polymer semiconductors

Yongqiang Shi, Liming Ding

Journal of Semiconductors, 2021, 42(10): 100202. doi: 10.1088/1674-4926/42/10/100202

3

Side chain engineering on D18 polymers yields 18.74% power conversion efficiency

Xianyi Meng, Ke Jin, Zuo Xiao, Liming Ding

Journal of Semiconductors, 2021, 42(10): 100501. doi: 10.1088/1674-4926/42/10/100501

4

Improved efficiency and photo-stability of methylamine-free perovskite solar cells via cadmium doping

Yong Chen, Yang Zhao, Qiufeng Ye, Zema Chu, Zhigang Yin, et al.

Journal of Semiconductors, 2019, 40(12): 122201. doi: 10.1088/1674-4926/40/12/122201

5

Simulation and application of external quantum efficiency of solar cells based on spectroscopy

Guanlin Chen, Can Han, Lingling Yan, Yuelong Li, Ying Zhao, et al.

Journal of Semiconductors, 2019, 40(12): 122701. doi: 10.1088/1674-4926/40/12/122701

6

Surface passivation of perovskite film for efficient solar cells

Yang (Michael) Yang

Journal of Semiconductors, 2019, 40(4): 040204. doi: 10.1088/1674-4926/40/4/040204

7

Interfacial engineering of printable bottom back metal electrodes for full-solution processed flexible organic solar cells

Hongyu Zhen, Kan Li, Yaokang Zhang, Lina Chen, Liyong Niu, et al.

Journal of Semiconductors, 2018, 39(1): 014002. doi: 10.1088/1674-4926/39/1/014002

8

Silver nanowire/polymer composite soft conductive film fabricated by large-area compatible coating for flexible pressure sensor array

Sujie Chen, Siying Li, Sai Peng, Yukun Huang, Jiaqing Zhao, et al.

Journal of Semiconductors, 2018, 39(1): 013001. doi: 10.1088/1674-4926/39/1/013001

9

Substrate temperature dependent studies on properties of chemical spray pyrolysis deposited CdS thin films for solar cell applications

Kiran Diwate, Amit Pawbake, Sachin Rondiya, Rupali Kulkarni, Ravi Waykar, et al.

Journal of Semiconductors, 2017, 38(2): 023001. doi: 10.1088/1674-4926/38/2/023001

10

ZnSe/ITO thin films:candidate for CdTe solar cell window layer

A.A. Khurram, M. Imran, Nawazish A. Khan, M. Nasir Mehmood

Journal of Semiconductors, 2017, 38(9): 093001. doi: 10.1088/1674-4926/38/9/093001

11

Large area perovskite solar cell module

Longhua Cai, Lusheng Liang, Jifeng Wu, Bin Ding, Lili Gao, et al.

Journal of Semiconductors, 2017, 38(1): 014006. doi: 10.1088/1674-4926/38/1/014006

12

Thermo-electronic solar power conversion with a parabolic concentrator

Olawole C. Olukunle, Dilip K. De

Journal of Semiconductors, 2016, 37(2): 024002. doi: 10.1088/1674-4926/37/2/024002

13

Modified textured surface MOCVD-ZnO:B transparent conductive layers for thin-film solar cells

Xinliang Chen, Congbo Yan, Xinhua Geng, Dekun Zhang, Changchun Wei, et al.

Journal of Semiconductors, 2014, 35(4): 043002. doi: 10.1088/1674-4926/35/4/043002

14

An InGaAs graded buffer layer in solar cells

Xiaosheng Qu, Hongyin Bao, Hanieh. S. Nikjalal, Liling Xiong, Hongxin Zhen, et al.

Journal of Semiconductors, 2014, 35(1): 014011. doi: 10.1088/1674-4926/35/1/014011

15

An 18-bit high performance audio Σ-Δ D/A converter

Zhang Hao, Huang Xiaowei, Han Yan, Ray C. Cheung, Han Xiaoxia, et al.

Journal of Semiconductors, 2010, 31(7): 075002. doi: 10.1088/1674-4926/31/7/075002

16

Effect of chemical polish etching and post annealing on the performance of silicon heterojunction solar cells

Jiang Zhenyu, Dou Yuhua, Zhang Yu, Zhou Yuqin, Liu Fengzhen, et al.

Journal of Semiconductors, 2009, 30(8): 084010. doi: 10.1088/1674-4926/30/8/084010

17

Boron-doped silicon film as a recombination layer in the tunnel junction of a tandem solar cell

Shi Mingji, Wang Zhanguo, Liu Shiyong, Peng Wenbo, Xiao Haibo, et al.

Journal of Semiconductors, 2009, 30(6): 063001. doi: 10.1088/1674-4926/30/6/063001

18

Performance analysis of solar cell arrays in concentrating light intensity

Xu Yongfeng, Li Ming, Wang Liuling, Lin Wenxian, Xiang Ming, et al.

Journal of Semiconductors, 2009, 30(8): 084011. doi: 10.1088/1674-4926/30/8/084011

19

Thermal analysis and test for single concentrator solar cells

Cui Min, Chen Nuofu, Yang Xiaoli, Wang Yu, Bai Yiming, et al.

Journal of Semiconductors, 2009, 30(4): 044011. doi: 10.1088/1674-4926/30/4/044011

20

Structural Characteristic of CdS Thin films and Their Influence on Cu(in,Ga)Se2(CIGS) Thin Film Solar Cell

Xue Yuming, Sun Yun, He Qing, Liu Fangfang, Li Changjian,and Ji Mingliang, et al.

Chinese Journal of Semiconductors , 2005, 26(2): 225-229.

1. Xie, L., Qiu, D., Zeng, X. et al. Tailoring small-molecule acceptors through asymmetric side-chain substitution for efficient organic solar cells | [通过不对称侧链取代调控小分子受体用于高效有机太阳能电池]. Science China Materials, 2025, 68(3): 860-867. doi:10.1007/s40843-024-3252-3
2. Ahmad, N., Ibrahim, M.A.A., Sayed, S.R.M. et al. Data-mining and machine learning based search for optimal materials for perovskite and organic solar cells. Solar Energy, 2025. doi:10.1016/j.solener.2024.113223
3. Jin, H., Mallo, N., Zhang, G. et al. Switching From Acceptor to FRET Donor: How the Organic Solar Cell Architecture Can Change the Role of a Chromophore. Advanced Functional Materials, 2025. doi:10.1002/adfm.202420416
4. Wang, S., Wang, S., Wang, J. et al. Achieving 20% Efficiency in Organic Solar Cells Through Conformationally Locked Solid Additives. Advanced Energy Materials, 2025. doi:10.1002/aenm.202405205
5. Sharma, A., Kumari, A., Sharma, A. et al. Peeping into the Conversion Efficiency of Organic Photovoltaic Cells: Donor–Acceptor materials, Current Trends, Scope, and Relevance. Journal of Electronic Materials, 2025. doi:10.1007/s11664-025-11845-3
6. Mbanga, T.A., Afungchui, D., Ebobenow, J. et al. Charge carrier mobility and the recombination processes within a bulk heterojunction organic solar cell exhibiting disordered hopping. Journal of Renewable Energies, 2024, 27(2): 191-212. doi:10.54966/jreen.v27i2.1190
7. Yang, S., Chen, Z., Zhu, J. et al. Guest Acceptors with Lower Electrostatic Potential in Ternary Organic Solar Cells for Minimizing Voltage Losses. Advanced Materials, 2024, 36(26): 2401789. doi:10.1002/adma.202401789
8. Feng, E., Zhang, C., Chang, J. et al. Organic solar cells with D18 or derivatives offer efficiency over 19%. Journal of Semiconductors, 2024, 45(5): 050201. doi:10.1088/1674-4926/45/5/050201
9. Zein, W., Alanazi, T.I., Saeed, A. et al. Proposal and design of organic/CIGS tandem solar cell: Unveiling optoelectronic approaches for enhanced photovoltaic performance. Optik, 2024. doi:10.1016/j.ijleo.2024.171719
10. Geng, Y., Chen, Y., Du, M. et al. Comprehensive Insight into the Structure Contribution of A2-A1-D-A1-A2 Acceptor to Performance of P3HT Solar Cells. Advanced Energy Materials, 2024, 14(14): 2303976. doi:10.1002/aenm.202303976
11. Chamola, P., Mittal, P., Kumar, B. Review—Organic Solar Cells: Structural Variety, Effect of Layers, and Applications. ECS Journal of Solid State Science and Technology, 2024, 13(3): 035001. doi:10.1149/2162-8777/ad32d8
12. Jain, A., Kothari, R., Tyagi, V.V. et al. Advances in organic solar cells: Materials, progress, challenges and amelioration for sustainable future. Sustainable Energy Technologies and Assessments, 2024. doi:10.1016/j.seta.2024.103632
13. Li, Q., Yue, S., Huang, Z. et al. Dissociation of singlet excitons dominates photocurrent improvement in high-efficiency non-fullerene organic solar cells. Nano Research Energy, 2024, 3(1): e9120099. doi:10.26599/NRE.2023.9120099
14. Liu, B., Li, C., Gu, X. et al. Enhancing Photovoltaic Performance of Nonfused-Ring Electron Acceptors via Asymmetric End-Group Engineering and Noncovalently Conformational Locks. Chinese Journal of Chemistry, 2024, 42(5): 485-490. doi:10.1002/cjoc.202300542
15. Cheng, F., Lai, S., Zhang, Y. et al. Random Terpolymer Based on Simple Siloxane-functionalized Thiophene Unit Enabling High-performance Non-fullerene Organic Solar Cells. Chinese Journal of Polymer Science (English Edition), 2024, 42(3): 311-321. doi:10.1007/s10118-023-3051-y
16. Xie, C., Zhang, B., Lv, M. et al. Engineering fibrillar morphology for highly efficient organic solar cells. Journal of Semiconductors, 2024, 45(2): 020202. doi:10.1088/1674-4926/45/2/020202
17. Zhang, L., Yang, K., Qiu, D. et al. Central core substitution optimized molecular aggregation and photovoltaic performance in A-DA′D-A type acceptors. Chemical Engineering Journal, 2024. doi:10.1016/j.cej.2024.148648
18. Piotrowski, P., Mech, W., Kaim, A. et al. Impact of the aliphatic side chain length on photovoltaic properties of fullerenes functionalized with 3-(1-indenyl)propionic acid esters. New Journal of Chemistry, 2024, 48(11): 4735-4748. doi:10.1039/d3nj05428d
19. Zhang, Q., Gao, H., Li, L. et al. Enhancing Molecular Stacking Through “Strengthened Aggregation in Pseudo-Dry Film” Strategy by Bromothiazol Additive for Efficient Organic Solar Cells. Advanced Energy Materials, 2024. doi:10.1002/aenm.202404507
20. D’auria, M., Emanuele, L. Thiophene-based Solar Cell. A Review. Current Organic Chemistry, 2024, 28(1): 21-31. doi:10.2174/0113852728285515231230162315
21. Al-Muhimeed, T.I., Alahmari, S., Ahsan, M. et al. An Investigation of the Inverted Structure of a PBDB:T/PZT:C1-Based Polymer Solar Cell. Polymers, 2023, 15(24): 4623. doi:10.3390/polym15244623
22. Ye, Q., Chen, Z., Yang, D. et al. Ductile Oligomeric Acceptor-Modified Flexible Organic Solar Cells Show Excellent Mechanical Robustness and Near 18% Efficiency. Advanced Materials, 2023, 35(44): 2305562. doi:10.1002/adma.202305562
23. Shah, N., Shah, A.A., Leung, P.K. et al. A Review of Third Generation Solar Cells. Processes, 2023, 11(6): 1852. doi:10.3390/pr11061852
24. Wu, X., Wu, Y., Peng, S. et al. Layer-by-Layer-Processed Organic Solar Cells with 18.02% Efficiency Enabled by Regulating the Aggregation of Bottom Polymers. Solar RRL, 2023, 7(11): 2300136. doi:10.1002/solr.202300136
25. Solak, E.K., Irmak, E. Advances in organic photovoltaic cells: a comprehensive review of materials, technologies, and performance. RSC Advances, 2023, 13(18): 12244-12269. doi:10.1039/d3ra01454a
26. Zhong, X., Chen, T.-W., Yan, L. et al. Facile Synthesis of Key Building Blocks of D18 Series Conjugated Polymers for High-Performance Polymer Solar Cells. ACS Applied Polymer Materials, 2023, 5(3): 1937-1944. doi:10.1021/acsapm.2c02009
27. Liang, S., Li, W., Ding, L. Single-component organic solar cells. Journal of Semiconductors, 2023, 44(3): 030201. doi:10.1088/1674-4926/44/3/030201
28. Zoromba, M.S., Abdel-Aziz, M.H., Ghazy, A.R. et al. Polymeric Solar Cell with 19.69% Efficiency Based on Poly(o-phenylene diamine)/TiO2 Composites. Polymers, 2023, 15(5): 1111. doi:10.3390/polym15051111
29. Sha, M.-Z., Pu, Y.-J., Yin, H. et al. Recent progress of indoor organic photovoltaics - From device performance to multifunctional applications. Organic Electronics, 2023. doi:10.1016/j.orgel.2022.106736
30. Salem, M.S., Shaker, A., Salah, M.M. Device Modeling of Efficient PBDB-T:PZT-Based All-Polymer Solar Cell: Role of Band Alignment. Polymers, 2023, 15(4): 869. doi:10.3390/polym15040869
31. Marsal, L.F., Sánchez, J.G., Torimtubun, A.A.A. Organic Solar Cells. Encyclopedia of Materials: Electronics, 2023. doi:10.1016/B978-0-12-819728-8.00074-7
32. Skoularioti, E.. Small molecule-based organic solar cells. Advances in Electronic Materials for Clean Energy Conversion and Storage Applications, 2023. doi:10.1016/B978-0-323-91206-8.00006-6
33. Tang, Z., Ding, L. The voltage loss in organic solar cells. Journal of Semiconductors, 2023, 44(1): 010202. doi:10.1088/1674-4926/44/1/010202
34. Chen, X., Liao, C., Deng, M. et al. Improving the performance of PM6 donor polymer by random ternary copolymerization of BDD and DTBT segments. Chemical Engineering Journal, 2023. doi:10.1016/j.cej.2022.139046
35. Lin, H., Yao, X., Li, M. et al. Volatile Solvent Additives Enabling High-Efficiency Organic Solar Cells without Thermal Annealing. ACS Applied Energy Materials, 2022, 5(12): 15529-15537. doi:10.1021/acsaem.2c03095
36. Poelking, C., Benduhn, J., Spoltore, D. et al. Open-circuit voltage of organic solar cells: interfacial roughness makes the difference. Communications Physics, 2022, 5(1): 307. doi:10.1038/s42005-022-01084-x
37. Khlaifia, D., Alimi, K. PTB7-Th /Non-fullerene acceptors for organic solar cells. Synthetic Metals, 2022. doi:10.1016/j.synthmet.2022.117189
38. Pan, L., Zhan, T., Zhang, Y. et al. Wide Bandgap Conjugated Polymers Based on Difluorobenzoxadiazole for Efficient Non-Fullerene Organic Solar Cells. Macromolecular Rapid Communications, 2022, 43(22): 2200591. doi:10.1002/marc.202200591
39. Liu, X., Liu, Z., Chen, M. et al. Using 3.0 eV Large Bandgap Conjugated Polymer as Host Donor to Construct Ternary Semi-Transparent Polymer Solar Cells: Increased Average Visible Transmittance and Modified Color Temperature. Macromolecular Rapid Communications, 2022, 43(22): 2200199. doi:10.1002/marc.202200199
40. Leonard W. T., N.G., Lee, S.W. et al. Organic Photovoltaics’ New Renaissance: Advances Toward Roll-to-Roll Manufacturing of Non-Fullerene Acceptor Organic Photovoltaics. Advanced Materials Technologies, 2022, 7(10): 2101556. doi:10.1002/admt.202101556
41. Zhang, G., Lin, F.R., Qi, F. et al. Renewed Prospects for Organic Photovoltaics. Chemical Reviews, 2022, 122(18): 14180-14274. doi:10.1021/acs.chemrev.1c00955
42. Zhou, J., He, Z., Sun, Y. et al. Organic Photovoltaic Cells Based on Nonhalogenated Polymer Donors and Nonhalogenated A-DA′D-A-Type Nonfullerene Acceptors with High VOCand Low Nonradiative Voltage Loss. ACS Applied Materials and Interfaces, 2022, 14(36): 41296-41303. doi:10.1021/acsami.2c10059
43. Wang, Q., Hou, Y., Shi, S. et al. Multicomponent Solar Cells with High Fill Factors and Efficiencies Based on Non-Fullerene Acceptor Isomers. Molecules, 2022, 27(18): 5802. doi:10.3390/molecules27185802
44. Li, S., Fu, Q., Meng, L. et al. Achieving over 18 % Efficiency Organic Solar Cell Enabled by a ZnO-Based Hybrid Electron Transport Layer with an Operational Lifetime up to 5 Years. Angewandte Chemie - International Edition, 2022, 61(34): e202207397. doi:10.1002/anie.202207397
45. Ali, A., Farid, T., Rafiq, M.I. et al. Evaluating the impact of Hartree-Fock exact exchange on the performance of global hybrid functionals for the vertical excited-state energies of fused-ring electron acceptors using TD-DFT. Physical Chemistry Chemical Physics, 2022, 24(35): 21270-21282. doi:10.1039/d2cp02228a
46. Ma, X., Jiang, Q., Xu, W. et al. Layered optimization strategy enables over 17.8% efficiency of layer-by-layer organic photovoltaics. Chemical Engineering Journal, 2022. doi:10.1016/j.cej.2022.136368
47. Zhang, Y., Xiao, Z., Ding, L. et al. Singlet fission and its application in organic solar cells. Journal of Semiconductors, 2022, 43(8): 080201. doi:10.1088/1674-4926/43/8/080201
48. Li, X., Tang, A., Guo, Q. et al. Carboxylate-Containing Wide-Bandgap Polymers for High-Voltage Non-Fullerene Organic Solar Cells. ACS Applied Materials and Interfaces, 2022, 14(28): 32308-32318. doi:10.1021/acsami.2c07251
49. Li, M., Liang, H., Jiang, C. et al. Pyran-fused non-fullerene acceptor achieving 15.51% efficiency in organic solar cells. Organic Electronics, 2022. doi:10.1016/j.orgel.2022.106541
50. Fang, H., Xia, D., Zhao, C. et al. Perylene bisimides-based molecular dyads with different alkyl linkers for single-component organic solar cells. Dyes and Pigments, 2022. doi:10.1016/j.dyepig.2022.110355
51. Yang, C., Zhan, S., Li, Q. et al. Systematic investigation on stability influence factors for organic solar cells. Nano Energy, 2022. doi:10.1016/j.nanoen.2022.107299
52. Piradi, V., Gao, Y., Yan, F. et al. Thiophene-Perylenediimide Bridged Dimeric Porphyrin Donors Based on the Donor-Acceptor-Donor Structure for Organic Photovoltaics. ACS Applied Energy Materials, 2022, 5(6): 7287-7296. doi:10.1021/acsaem.2c00819
53. Ma, R., Yu, J., Liu, T. et al. All-polymer solar cells with over 16% efficiency and enhanced stability enabled by compatible solvent and polymer additives: Photovoltaics: Special Issue Dedicated to Professor Yongfang Li. Aggregate, 2022, 3(3): e58. doi:10.1002/agt2.58
54. Li, M., Wang, J., Ding, L. et al. Large-area organic solar cells. Journal of Semiconductors, 2022, 43(6): 060201. doi:10.1088/1674-4926/43/6/060201
55. Li, D., Geng, F., Hao, T. et al. n-Doping of photoactive layer in binary organic solar cells realizes over 18.3% efficiency. Nano Energy, 2022. doi:10.1016/j.nanoen.2022.107133
56. Jin, K., Ou, Z., Zhang, L. et al. A chlorinated lactone polymer donor featuring high performance and low cost. Journal of Semiconductors, 2022, 43(5): 050501. doi:10.1088/1674-4926/43/5/050501
57. Ji, Y., Bai, H., Zhang, L. et al. Nonfullerene acceptors based on perylene monoimides. Journal of Semiconductors, 2022, 43(5): 050203. doi:10.1088/1674-4926/43/5/050203
58. Yin, B., Chen, Z., Pang, S. et al. The Renaissance of Oligothiophene-Based Donor–Acceptor Polymers in Organic Solar Cells. Advanced Energy Materials, 2022, 12(15): 2104050. doi:10.1002/aenm.202104050
59. Yuan, X., Zhao, Y., Xie, D. et al. Polythiophenes for organic solar cells with efficiency surpassing 17%. Joule, 2022, 6(3): 647-661. doi:10.1016/j.joule.2022.02.006
60. Cao, J., Yi, L., Ding, L. The origin and evolution of Y6 structure. Journal of Semiconductors, 2022, 43(3): 030202. doi:10.1088/1674-4926/43/3/030202
61. Li, Y., Huang, W., Zhao, D. et al. Recent Progress in Organic Solar Cells: A Review on Materials from Acceptor to Donor. Molecules, 2022, 27(6): 1800. doi:10.3390/molecules27061800
62. Chen, S., He, C., Li, Y. et al. Improving the device performance of organic solar cells with immiscible solid additives. Journal of Materials Chemistry C, 2022, 10(7): 2749-2756. doi:10.1039/d1tc04222j
63. Zhang, L., Chang, Y., Zhu, X. et al. Electron-deficient TVT unit-based D-A polymer donor for high-efficiency thick-film OSCs. Nanotechnology, 2022, 33(6): 065401. doi:10.1088/1361-6528/ac335a
64. Ma, R., Zhou, K., Sun, Y. et al. Achieving high efficiency and well-kept ductility in ternary all-polymer organic photovoltaic blends thanks to two well miscible donors. Matter, 2022, 5(2): 725-734. doi:10.1016/j.matt.2021.12.002
65. Kulszewicz-Bajer, I., Nowakowski, R., Zagórska, M. et al. Copolymers Containing 1-Methyl-2-phenyl-imidazole Moieties as Permanent Dipole Generating Units: Synthesis, Spectroscopic, Electrochemical, and Photovoltaic Properties. Molecules, 2022, 27(3): 915. doi:10.3390/molecules27030915
66. Ren, H., Ma, Y., Liu, H.-M. et al. Absorption Spectrum-Compensating Configuration Reduces the Energy Loss of Nonfullerene Organic Solar Cells. Advanced Functional Materials, 2022, 32(8): 2109735. doi:10.1002/adfm.202109735
67. Li, Y., Li, T., Wang, J. et al. Intrinsically inert hyperbranched interlayer for enhanced stability of organic solar cells. Science Bulletin, 2022, 67(2): 171-177. doi:10.1016/j.scib.2021.09.013
68. Shang, L., Qu, S., Deng, Y. et al. Simple furan-based polymers with the self-healing function enable efficient eco-friendly organic solar cells with high stability. Journal of Materials Chemistry C, 2022, 10(2): 506-516. doi:10.1039/d1tc05111c
69. Doat, O., Barboza, B.H., Batagin-Neto, A. et al. Review: materials and modelling for organic photovoltaic devices. Polymer International, 2022, 71(1): 6-25. doi:10.1002/pi.6280
70. Xu, W., Chang, Y., Zhu, X. et al. Organic solar cells based on small molecule donor and polymer acceptor. Chinese Chemical Letters, 2022, 33(1): 123-132. doi:10.1016/j.cclet.2021.07.028
71. Xu, J., Sun, A., Xiao, Z. et al. Efficient wide-bandgap copolymer donors with reduced synthesis cost. Journal of Materials Chemistry C, 2021, 9(45): 16187-16191. doi:10.1039/d1tc01746b
72. Ali, H.M., Reda, S.M., Ali, A.I. et al. A quick peek at solar cells and a closer insight at perovskite solar cells. Egyptian Journal of Petroleum, 2021, 30(4): 53-63. doi:10.1016/j.ejpe.2021.11.002
73. You, X., Xia, P., Li, Y. et al. Unfused vs fused thienoazacoronene-cored perylene diimide oligomer based acceptors for non-fullerene organic solar cells. Dyes and Pigments, 2021. doi:10.1016/j.dyepig.2021.109833
74. Xu, C., Jin, K., Xiao, Z. et al. Wide Bandgap Polymer with Narrow Photon Harvesting in Visible Light Range Enables Efficient Semitransparent Organic Photovoltaics. Advanced Functional Materials, 2021, 31(52): 2107934. doi:10.1002/adfm.202107934
75. Qin, Y., Chang, Y., Zhu, X. et al. 18.4% efficiency achieved by the cathode interface engineering in non-fullerene polymer solar cells. Nano Today, 2021. doi:10.1016/j.nantod.2021.101289
76. Chen, X., Wang, D., Wang, Z. et al. 18.02% Efficiency ternary organic solar cells with a small-molecular donor third component. Chemical Engineering Journal, 2021. doi:10.1016/j.cej.2021.130397
77. Xu, C., Yao, C., Zheng, S. Effects of lateral-chain thiophene fluorination on morphology and charge transport of BDT-T based small molecule donors: a study with multiscale simulations. Journal of Materials Chemistry C, 2021, 9(41): 14637-14647. doi:10.1039/d1tc03784f
78. Xie, L., Liu, Z., Tang, W. et al. Structure influence of alkyl chains of thienothiophene-porphyrins on the performance of organic solar cells. Materials Reports: Energy, 2021, 1(4): 100066. doi:10.1016/j.matre.2021.100066
79. Markina, A., Lin, K.-H., Liu, W. et al. Chemical Design Rules for Non-Fullerene Acceptors in Organic Solar Cells. Advanced Energy Materials, 2021, 11(44): 2102363. doi:10.1002/aenm.202102363
80. Huang, H., Jiang, L., Peng, J. et al. High-Performance Organic Phototransistors Based on D18, a High-Mobility and Unipolar Polymer. Chemistry of Materials, 2021, 33(20): 8089-8096. doi:10.1021/acs.chemmater.1c02839
81. Gao, X., Su, Z., Qu, S. et al. Efficient and moisture-resistant organic solar cellsviasimultaneously reducing the surface defects and hydrophilicity of an electron transport layer. Journal of Materials Chemistry C, 2021, 9(38): 13500-13508. doi:10.1039/d1tc03409j
82. Lan, W., Gu, J., Wu, S. et al. Toward improved stability of nonfullerene organic solar cells: Impact of interlayer and built-in potential. EcoMat, 2021, 3(5): e12134. doi:10.1002/eom2.12134
83. Shi, Y., Ding, L. n-Type acceptor-acceptor polymer semiconductors. Journal of Semiconductors, 2021, 42(10): 100202. doi:10.1088/1674-4926/42/10/100202
84. Sun, A., Xu, J., Zong, G. et al. A wide-bandgap copolymer donor with a 5-methyl-4Hdithieno[ 3, 2-e:2', 3'-g]isoindole-4, 6(5H)-dione unit. Journal of Semiconductors, 2021, 42(10): 100502. doi:10.1088/1674-4926/42/10/100502
85. Meng, X., Jin, K., Xiao, Z. et al. Side chain engineering on D18 polymers yields 18.74% power conversion efficiency. Journal of Semiconductors, 2021, 42(10): 100501. doi:10.1088/1674-4926/42/10/100501
86. Yuan, X., Zhao, Y., Zhan, T. et al. A donor polymer based on 3-cyanothiophene with superior batch-to-batch reproducibility for high-efficiency organic solar cells. Energy and Environmental Science, 2021, 14(10): 5530-5540. doi:10.1039/d1ee01957k
87. Park, S.H., Park, S., Lee, K.J. et al. Development of interlayers based on polymethacrylate incorporating tertiary amine for organic solar cells with improved efficiency and stability. Dyes and Pigments, 2021. doi:10.1016/j.dyepig.2021.109523
88. Peng, W., Lin, Y., Jeong, S.Y. et al. Using Two Compatible Donor Polymers Boosts the Efficiency of Ternary Organic Solar Cells to 17.7%. Chemistry of Materials, 2021, 33(18): 7254-7262. doi:10.1021/acs.chemmater.1c01433
89. Li, Y., Lin, Y. Planar heterojunctions for reduced non-radiative open-circuit voltage loss and enhanced stability of organic solar cells. Journal of Materials Chemistry C, 2021, 9(35): 11715-11721. doi:10.1039/d1tc01536b
90. Lee, Y.W., Yeop, J., Lim, H. et al. Fullerene-Based Triads with Controlled Alkyl Spacer Length as Photoactive Materials for Single-Component Organic Solar Cells. ACS Applied Materials and Interfaces, 2021, 13(36): 43174-43185. doi:10.1021/acsami.1c14901
91. Li, D., Zeng, Y., Chen, Z. et al. Investigating the reason for high FF from ternary organic solar cells. Journal of Semiconductors, 2021, 42(9): 090501. doi:10.1088/1674-4926/42/9/090501
92. Yang, X., Ding, L. Organic semiconductors: Commercialization and market. Journal of Semiconductors, 2021, 42(9): 090201. doi:10.1088/1674-4926/42/9/090201
93. Li, S., Sun, Y., Zhou, B. et al. Concurrently Improved Jsc, Fill Factor, and Stability in a Ternary Organic Solar Cell Enabled by a C-Shaped Non-fullerene Acceptor and Its Structurally Similar Third Component. ACS Applied Materials and Interfaces, 2021, 13(34): 40766-40777. doi:10.1021/acsami.1c13035
94. Nie, Q., Tang, A., Guo, Q. et al. Benzothiadiazole-based non-fullerene acceptors. Nano Energy, 2021. doi:10.1016/j.nanoen.2021.106174
95. Luo, Y., Chen, X., Xiao, Z. et al. A large-bandgap copolymer donor for efficient ternary organic solar cells. Materials Chemistry Frontiers, 2021, 5(16): 6139-6144. doi:10.1039/d1qm00835h
96. Zhang, X., Li, C., Qin, L. et al. Side-Chain Engineering for Enhancing the Molecular Rigidity and Photovoltaic Performance of Noncovalently Fused-Ring Electron Acceptors. Angewandte Chemie - International Edition, 2021, 60(32): 17720-17725. doi:10.1002/anie.202106753
97. Zeng, Y., Li, D., Xiao, Z. et al. Exploring the Charge Dynamics and Energy Loss in Ternary Organic Solar Cells with a Fill Factor Exceeding 80%. Advanced Energy Materials, 2021, 11(31): 2101338. doi:10.1002/aenm.202101338
98. Ji, X., Xiao, Z., Sun, H. et al. Polymer acceptors for all-polymer solar cells. Journal of Semiconductors, 2021, 42(8): 080202. doi:10.1088/1674-4926/42/8/080202
99. van der Staaij, F.M., van Keulen, I.M., von Hauff, E. Organic Photovoltaics: Where Are We Headed?. Solar RRL, 2021, 5(8): 2100167. doi:10.1002/solr.202100167
100. Cai, Y., Li, Y., Wang, R. et al. A Well-Mixed Phase Formed by Two Compatible Non-Fullerene Acceptors Enables Ternary Organic Solar Cells with Efficiency over 18.6%. Advanced Materials, 2021, 33(33): 2101733. doi:10.1002/adma.202101733
101. Das, P., Behura, S.K., McGill, S.A. et al. Development of photovoltaic solar cells based on heterostructure of layered materials: challenges and opportunities. Emergent Materials, 2021, 4(4): 881-900. doi:10.1007/s42247-021-00205-6
102. Ren, J., Bi, P., Zhang, J. et al. Molecular design revitalizes the low-cost PTV-polymer for highly efficient organic solar cells. National Science Review, 2021, 8(8): nwab031. doi:10.1093/nsr/nwab031
103. Jin, L., Ma, R., Liu, H. et al. Boosting Highly Efficient Hydrocarbon Solvent-Processed All-Polymer-Based Organic Solar Cells by Modulating Thin-Film Morphology. ACS Applied Materials and Interfaces, 2021, 13(29): 34301-34307. doi:10.1021/acsami.1c07946
104. Hofinger, J., Putz, C., Mayr, F. et al. Understanding the low voltage losses in high-performance non-fullerene acceptor-based organic solar cells. Materials Advances, 2021, 2(13): 4291-4302. doi:10.1039/d1ma00293g
105. Song, J., Zhu, L., Li, C. et al. High-efficiency organic solar cells with low voltage loss induced by solvent additive strategy. Matter, 2021, 4(7): 2542-2552. doi:10.1016/j.matt.2021.06.010
106. Wang, X., Sun, Q., Gao, J. et al. Recent progress of organic photovoltaics with efficiency over 17%. Energies, 2021, 14(14): 4200. doi:10.3390/en14144200
107. Tang, A., Xiao, Z., Ding, L. et al. ∼1.2 v open-circuit voltage from organic solar cells. Journal of Semiconductors, 2021, 42(7): 070202. doi:10.1088/1674-4926/42/7/070202
108. Jiang, Y., Jin, K., Chen, X. et al. Post-sulphuration enhances the performance of a lactone polymer donor. Journal of Semiconductors, 2021, 42(7): 070501. doi:10.1088/1674-4926/42/7/070501
109. Li, X., Xu, J., Xiao, Z. et al. Dithieno[3', 2':3, 4;2'', 3'':5, 6]benzo[1, 2-c][1, 2, 5]oxadiazole-based polymer donors with deep HOMO levels. Journal of Semiconductors, 2021, 42(6): 060501. doi:10.1088/1674-4926/42/6/060501
110. Jin, K., Xiao, Z., Ding, L. 18.69% PCE from organic solar cells. Journal of Semiconductors, 2021, 42(6): 060502. doi:10.1088/1674-4926/42/6/060502
111. Guan, W., Yuan, D., Wu, J. et al. Blade-coated organic solar cells from non-halogenated solvent offer 17% efficiency. Journal of Semiconductors, 2021, 42(3): 030502. doi:10.1088/1674-4926/42/3/030502
112. Liu, L., Xiao, Z., Zuo, C. et al. Inorganic perovskite/organic tandem solar cells with efficiency over 20%. Journal of Semiconductors, 2021, 42(2): 020501. doi:10.1088/1674-4926/42/2/020501
113. Yilmaz, T.. The hydrothermal synthesis of blue-emitting boron-doped CQDs and its application for improving the photovoltaic parameters of organic solar cell. Turkish Journal of Chemistry, 2021, 45(6): 1828-1840. doi:10.3906/kim-2104-14
  • Search

    Advanced Search >>

    GET CITATION

    Ke Jin, Zuo Xiao, Liming Ding. D18, an eximious solar polymer![J]. Journal of Semiconductors, 2021, 42(1): 010502. doi: 10.1088/1674-4926/42/1/010502
    K Jin, Z Xiao, L M Ding, D18, an eximious solar polymer![J]. J. Semicond., 2021, 42(1): 010502. doi: 10.1088/1674-4926/42/1/010502.
    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 6982 Times PDF downloads: 282 Times Cited by: 113 Times

    History

    Received: 26 December 2020 Revised: Online: Accepted Manuscript: 26 December 2020Uncorrected proof: 28 December 2020Published: 09 January 2021

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Ke Jin, Zuo Xiao, Liming Ding. D18, an eximious solar polymer![J]. Journal of Semiconductors, 2021, 42(1): 010502. doi: 10.1088/1674-4926/42/1/010502 ****K Jin, Z Xiao, L M Ding, D18, an eximious solar polymer![J]. J. Semicond., 2021, 42(1): 010502. doi: 10.1088/1674-4926/42/1/010502.
      Citation:
      Ke Jin, Zuo Xiao, Liming Ding. D18, an eximious solar polymer![J]. Journal of Semiconductors, 2021, 42(1): 010502. doi: 10.1088/1674-4926/42/1/010502 ****
      K Jin, Z Xiao, L M Ding, D18, an eximious solar polymer![J]. J. Semicond., 2021, 42(1): 010502. doi: 10.1088/1674-4926/42/1/010502.

      D18, an eximious solar polymer!

      DOI: 10.1088/1674-4926/42/1/010502
      More Information
      • Ke Jin:got his MS degree from Wuhan Institute of Technology in 2019. Now he is a research assistant in Liming Ding Group at National Center for Nanoscience and Technology. His current research focuses on organic solar cells
      • Zuo Xiao:got his BS and PhD degrees from Peking University under the supervision of Prof. Liangbing Gan. He did postdoctoral research in Eiichi Nakamura Lab at the University of Tokyo. In March 2011, he joined Liming Ding Group at National Center for Nanoscience and Technology as an associate professor. In April 2020, he was promoted to be a full professor. His current research focuses on organic solar cells
      • Liming Ding:got his PhD from University of Science and Technology of China (was a joint student at Changchun Institute of Applied Chemistry, CAS). He started his research on OSCs and PLEDs in Olle Inganäs Lab in 1998. Later on, he worked at National Center for Polymer Research, Wright-Patterson Air Force Base and Argonne National Lab (USA). He joined Konarka as a Senior Scientist in 2008. In 2010, he joined National Center for Nanoscience and Technology as a full professor. His research focuses on functional materials and devices. He is RSC Fellow, the nominator for Xplorer Prize, and the Associate Editors for Science Bulletin and Journal of Semiconductors
      • Corresponding author: Z Xiao, xiaoz@nanoctr.cn; L Ding, ding@nanoctr.cn
      • Received Date: 2020-12-26
      • Published Date: 2021-01-10

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return