1. | Xie, L., Qiu, D., Zeng, X. et al. Tailoring small-molecule acceptors through asymmetric side-chain substitution for efficient organic solar cells | [通过不对称侧链取代调控小分子受体用于高效有机太阳能电池]. Science China Materials, 2025, 68(3): 860-867. doi:10.1007/s40843-024-3252-3 | |
2. | Ahmad, N., Ibrahim, M.A.A., Sayed, S.R.M. et al. Data-mining and machine learning based search for optimal materials for perovskite and organic solar cells. Solar Energy, 2025. doi:10.1016/j.solener.2024.113223 | |
3. | Jin, H., Mallo, N., Zhang, G. et al. Switching From Acceptor to FRET Donor: How the Organic Solar Cell Architecture Can Change the Role of a Chromophore. Advanced Functional Materials, 2025. doi:10.1002/adfm.202420416 | |
4. | Wang, S., Wang, S., Wang, J. et al. Achieving 20% Efficiency in Organic Solar Cells Through Conformationally Locked Solid Additives. Advanced Energy Materials, 2025. doi:10.1002/aenm.202405205 | |
5. | Sharma, A., Kumari, A., Sharma, A. et al. Peeping into the Conversion Efficiency of Organic Photovoltaic Cells: Donor–Acceptor materials, Current Trends, Scope, and Relevance. Journal of Electronic Materials, 2025. doi:10.1007/s11664-025-11845-3 | |
6. | Mbanga, T.A., Afungchui, D., Ebobenow, J. et al. Charge carrier mobility and the recombination processes within a bulk heterojunction organic solar cell exhibiting disordered hopping. Journal of Renewable Energies, 2024, 27(2): 191-212. doi:10.54966/jreen.v27i2.1190 | |
7. | Yang, S., Chen, Z., Zhu, J. et al. Guest Acceptors with Lower Electrostatic Potential in Ternary Organic Solar Cells for Minimizing Voltage Losses. Advanced Materials, 2024, 36(26): 2401789. doi:10.1002/adma.202401789 | |
8. | Feng, E., Zhang, C., Chang, J. et al. Organic solar cells with D18 or derivatives offer efficiency over 19%. Journal of Semiconductors, 2024, 45(5): 050201. doi:10.1088/1674-4926/45/5/050201 | |
9. | Zein, W., Alanazi, T.I., Saeed, A. et al. Proposal and design of organic/CIGS tandem solar cell: Unveiling optoelectronic approaches for enhanced photovoltaic performance. Optik, 2024. doi:10.1016/j.ijleo.2024.171719 | |
10. | Geng, Y., Chen, Y., Du, M. et al. Comprehensive Insight into the Structure Contribution of A2-A1-D-A1-A2 Acceptor to Performance of P3HT Solar Cells. Advanced Energy Materials, 2024, 14(14): 2303976. doi:10.1002/aenm.202303976 | |
11. | Chamola, P., Mittal, P., Kumar, B. Review—Organic Solar Cells: Structural Variety, Effect of Layers, and Applications. ECS Journal of Solid State Science and Technology, 2024, 13(3): 035001. doi:10.1149/2162-8777/ad32d8 | |
12. | Jain, A., Kothari, R., Tyagi, V.V. et al. Advances in organic solar cells: Materials, progress, challenges and amelioration for sustainable future. Sustainable Energy Technologies and Assessments, 2024. doi:10.1016/j.seta.2024.103632 | |
13. | Li, Q., Yue, S., Huang, Z. et al. Dissociation of singlet excitons dominates photocurrent improvement in high-efficiency non-fullerene organic solar cells. Nano Research Energy, 2024, 3(1): e9120099. doi:10.26599/NRE.2023.9120099 | |
14. | Liu, B., Li, C., Gu, X. et al. Enhancing Photovoltaic Performance of Nonfused-Ring Electron Acceptors via Asymmetric End-Group Engineering and Noncovalently Conformational Locks. Chinese Journal of Chemistry, 2024, 42(5): 485-490. doi:10.1002/cjoc.202300542 | |
15. | Cheng, F., Lai, S., Zhang, Y. et al. Random Terpolymer Based on Simple Siloxane-functionalized Thiophene Unit Enabling High-performance Non-fullerene Organic Solar Cells. Chinese Journal of Polymer Science (English Edition), 2024, 42(3): 311-321. doi:10.1007/s10118-023-3051-y | |
16. | Xie, C., Zhang, B., Lv, M. et al. Engineering fibrillar morphology for highly efficient organic solar cells. Journal of Semiconductors, 2024, 45(2): 020202. doi:10.1088/1674-4926/45/2/020202 | |
17. | Zhang, L., Yang, K., Qiu, D. et al. Central core substitution optimized molecular aggregation and photovoltaic performance in A-DA′D-A type acceptors. Chemical Engineering Journal, 2024. doi:10.1016/j.cej.2024.148648 | |
18. | Piotrowski, P., Mech, W., Kaim, A. et al. Impact of the aliphatic side chain length on photovoltaic properties of fullerenes functionalized with 3-(1-indenyl)propionic acid esters. New Journal of Chemistry, 2024, 48(11): 4735-4748. doi:10.1039/d3nj05428d | |
19. | Zhang, Q., Gao, H., Li, L. et al. Enhancing Molecular Stacking Through “Strengthened Aggregation in Pseudo-Dry Film” Strategy by Bromothiazol Additive for Efficient Organic Solar Cells. Advanced Energy Materials, 2024. doi:10.1002/aenm.202404507 | |
20. | D’auria, M., Emanuele, L. Thiophene-based Solar Cell. A Review. Current Organic Chemistry, 2024, 28(1): 21-31. doi:10.2174/0113852728285515231230162315 | |
21. | Al-Muhimeed, T.I., Alahmari, S., Ahsan, M. et al. An Investigation of the Inverted Structure of a PBDB:T/PZT:C1-Based Polymer Solar Cell. Polymers, 2023, 15(24): 4623. doi:10.3390/polym15244623 | |
22. | Ye, Q., Chen, Z., Yang, D. et al. Ductile Oligomeric Acceptor-Modified Flexible Organic Solar Cells Show Excellent Mechanical Robustness and Near 18% Efficiency. Advanced Materials, 2023, 35(44): 2305562. doi:10.1002/adma.202305562 | |
23. | Shah, N., Shah, A.A., Leung, P.K. et al. A Review of Third Generation Solar Cells. Processes, 2023, 11(6): 1852. doi:10.3390/pr11061852 | |
24. | Wu, X., Wu, Y., Peng, S. et al. Layer-by-Layer-Processed Organic Solar Cells with 18.02% Efficiency Enabled by Regulating the Aggregation of Bottom Polymers. Solar RRL, 2023, 7(11): 2300136. doi:10.1002/solr.202300136 | |
25. | Solak, E.K., Irmak, E. Advances in organic photovoltaic cells: a comprehensive review of materials, technologies, and performance. RSC Advances, 2023, 13(18): 12244-12269. doi:10.1039/d3ra01454a | |
26. | Zhong, X., Chen, T.-W., Yan, L. et al. Facile Synthesis of Key Building Blocks of D18 Series Conjugated Polymers for High-Performance Polymer Solar Cells. ACS Applied Polymer Materials, 2023, 5(3): 1937-1944. doi:10.1021/acsapm.2c02009 | |
27. | Liang, S., Li, W., Ding, L. Single-component organic solar cells. Journal of Semiconductors, 2023, 44(3): 030201. doi:10.1088/1674-4926/44/3/030201 | |
28. | Zoromba, M.S., Abdel-Aziz, M.H., Ghazy, A.R. et al. Polymeric Solar Cell with 19.69% Efficiency Based on Poly(o-phenylene diamine)/TiO2 Composites. Polymers, 2023, 15(5): 1111. doi:10.3390/polym15051111 | |
29. | Sha, M.-Z., Pu, Y.-J., Yin, H. et al. Recent progress of indoor organic photovoltaics - From device performance to multifunctional applications. Organic Electronics, 2023. doi:10.1016/j.orgel.2022.106736 | |
30. | Salem, M.S., Shaker, A., Salah, M.M. Device Modeling of Efficient PBDB-T:PZT-Based All-Polymer Solar Cell: Role of Band Alignment. Polymers, 2023, 15(4): 869. doi:10.3390/polym15040869 | |
31. | Marsal, L.F., Sánchez, J.G., Torimtubun, A.A.A. Organic Solar Cells. Encyclopedia of Materials: Electronics, 2023. doi:10.1016/B978-0-12-819728-8.00074-7 | |
32. | Skoularioti, E.. Small molecule-based organic solar cells. Advances in Electronic Materials for Clean Energy Conversion and Storage Applications, 2023. doi:10.1016/B978-0-323-91206-8.00006-6 | |
33. | Tang, Z., Ding, L. The voltage loss in organic solar cells. Journal of Semiconductors, 2023, 44(1): 010202. doi:10.1088/1674-4926/44/1/010202 | |
34. | Chen, X., Liao, C., Deng, M. et al. Improving the performance of PM6 donor polymer by random ternary copolymerization of BDD and DTBT segments. Chemical Engineering Journal, 2023. doi:10.1016/j.cej.2022.139046 | |
35. | Lin, H., Yao, X., Li, M. et al. Volatile Solvent Additives Enabling High-Efficiency Organic Solar Cells without Thermal Annealing. ACS Applied Energy Materials, 2022, 5(12): 15529-15537. doi:10.1021/acsaem.2c03095 | |
36. | Poelking, C., Benduhn, J., Spoltore, D. et al. Open-circuit voltage of organic solar cells: interfacial roughness makes the difference. Communications Physics, 2022, 5(1): 307. doi:10.1038/s42005-022-01084-x | |
37. | Khlaifia, D., Alimi, K. PTB7-Th /Non-fullerene acceptors for organic solar cells. Synthetic Metals, 2022. doi:10.1016/j.synthmet.2022.117189 | |
38. | Pan, L., Zhan, T., Zhang, Y. et al. Wide Bandgap Conjugated Polymers Based on Difluorobenzoxadiazole for Efficient Non-Fullerene Organic Solar Cells. Macromolecular Rapid Communications, 2022, 43(22): 2200591. doi:10.1002/marc.202200591 | |
39. | Liu, X., Liu, Z., Chen, M. et al. Using 3.0 eV Large Bandgap Conjugated Polymer as Host Donor to Construct Ternary Semi-Transparent Polymer Solar Cells: Increased Average Visible Transmittance and Modified Color Temperature. Macromolecular Rapid Communications, 2022, 43(22): 2200199. doi:10.1002/marc.202200199 | |
40. | Leonard W. T., N.G., Lee, S.W. et al. Organic Photovoltaics’ New Renaissance: Advances Toward Roll-to-Roll Manufacturing of Non-Fullerene Acceptor Organic Photovoltaics. Advanced Materials Technologies, 2022, 7(10): 2101556. doi:10.1002/admt.202101556 | |
41. | Zhang, G., Lin, F.R., Qi, F. et al. Renewed Prospects for Organic Photovoltaics. Chemical Reviews, 2022, 122(18): 14180-14274. doi:10.1021/acs.chemrev.1c00955 | |
42. | Zhou, J., He, Z., Sun, Y. et al. Organic Photovoltaic Cells Based on Nonhalogenated Polymer Donors and Nonhalogenated A-DA′D-A-Type Nonfullerene Acceptors with High VOCand Low Nonradiative Voltage Loss. ACS Applied Materials and Interfaces, 2022, 14(36): 41296-41303. doi:10.1021/acsami.2c10059 | |
43. | Wang, Q., Hou, Y., Shi, S. et al. Multicomponent Solar Cells with High Fill Factors and Efficiencies Based on Non-Fullerene Acceptor Isomers. Molecules, 2022, 27(18): 5802. doi:10.3390/molecules27185802 | |
44. | Li, S., Fu, Q., Meng, L. et al. Achieving over 18 % Efficiency Organic Solar Cell Enabled by a ZnO-Based Hybrid Electron Transport Layer with an Operational Lifetime up to 5 Years. Angewandte Chemie - International Edition, 2022, 61(34): e202207397. doi:10.1002/anie.202207397 | |
45. | Ali, A., Farid, T., Rafiq, M.I. et al. Evaluating the impact of Hartree-Fock exact exchange on the performance of global hybrid functionals for the vertical excited-state energies of fused-ring electron acceptors using TD-DFT. Physical Chemistry Chemical Physics, 2022, 24(35): 21270-21282. doi:10.1039/d2cp02228a | |
46. | Ma, X., Jiang, Q., Xu, W. et al. Layered optimization strategy enables over 17.8% efficiency of layer-by-layer organic photovoltaics. Chemical Engineering Journal, 2022. doi:10.1016/j.cej.2022.136368 | |
47. | Zhang, Y., Xiao, Z., Ding, L. et al. Singlet fission and its application in organic solar cells. Journal of Semiconductors, 2022, 43(8): 080201. doi:10.1088/1674-4926/43/8/080201 | |
48. | Li, X., Tang, A., Guo, Q. et al. Carboxylate-Containing Wide-Bandgap Polymers for High-Voltage Non-Fullerene Organic Solar Cells. ACS Applied Materials and Interfaces, 2022, 14(28): 32308-32318. doi:10.1021/acsami.2c07251 | |
49. | Li, M., Liang, H., Jiang, C. et al. Pyran-fused non-fullerene acceptor achieving 15.51% efficiency in organic solar cells. Organic Electronics, 2022. doi:10.1016/j.orgel.2022.106541 | |
50. | Fang, H., Xia, D., Zhao, C. et al. Perylene bisimides-based molecular dyads with different alkyl linkers for single-component organic solar cells. Dyes and Pigments, 2022. doi:10.1016/j.dyepig.2022.110355 | |
51. | Yang, C., Zhan, S., Li, Q. et al. Systematic investigation on stability influence factors for organic solar cells. Nano Energy, 2022. doi:10.1016/j.nanoen.2022.107299 | |
52. | Piradi, V., Gao, Y., Yan, F. et al. Thiophene-Perylenediimide Bridged Dimeric Porphyrin Donors Based on the Donor-Acceptor-Donor Structure for Organic Photovoltaics. ACS Applied Energy Materials, 2022, 5(6): 7287-7296. doi:10.1021/acsaem.2c00819 | |
53. | Ma, R., Yu, J., Liu, T. et al. All-polymer solar cells with over 16% efficiency and enhanced stability enabled by compatible solvent and polymer additives: Photovoltaics: Special Issue Dedicated to Professor Yongfang Li. Aggregate, 2022, 3(3): e58. doi:10.1002/agt2.58 | |
54. | Li, M., Wang, J., Ding, L. et al. Large-area organic solar cells. Journal of Semiconductors, 2022, 43(6): 060201. doi:10.1088/1674-4926/43/6/060201 | |
55. | Li, D., Geng, F., Hao, T. et al. n-Doping of photoactive layer in binary organic solar cells realizes over 18.3% efficiency. Nano Energy, 2022. doi:10.1016/j.nanoen.2022.107133 | |
56. | Jin, K., Ou, Z., Zhang, L. et al. A chlorinated lactone polymer donor featuring high performance and low cost. Journal of Semiconductors, 2022, 43(5): 050501. doi:10.1088/1674-4926/43/5/050501 | |
57. | Ji, Y., Bai, H., Zhang, L. et al. Nonfullerene acceptors based on perylene monoimides. Journal of Semiconductors, 2022, 43(5): 050203. doi:10.1088/1674-4926/43/5/050203 | |
58. | Yin, B., Chen, Z., Pang, S. et al. The Renaissance of Oligothiophene-Based Donor–Acceptor Polymers in Organic Solar Cells. Advanced Energy Materials, 2022, 12(15): 2104050. doi:10.1002/aenm.202104050 | |
59. | Yuan, X., Zhao, Y., Xie, D. et al. Polythiophenes for organic solar cells with efficiency surpassing 17%. Joule, 2022, 6(3): 647-661. doi:10.1016/j.joule.2022.02.006 | |
60. | Cao, J., Yi, L., Ding, L. The origin and evolution of Y6 structure. Journal of Semiconductors, 2022, 43(3): 030202. doi:10.1088/1674-4926/43/3/030202 | |
61. | Li, Y., Huang, W., Zhao, D. et al. Recent Progress in Organic Solar Cells: A Review on Materials from Acceptor to Donor. Molecules, 2022, 27(6): 1800. doi:10.3390/molecules27061800 | |
62. | Chen, S., He, C., Li, Y. et al. Improving the device performance of organic solar cells with immiscible solid additives. Journal of Materials Chemistry C, 2022, 10(7): 2749-2756. doi:10.1039/d1tc04222j | |
63. | Zhang, L., Chang, Y., Zhu, X. et al. Electron-deficient TVT unit-based D-A polymer donor for high-efficiency thick-film OSCs. Nanotechnology, 2022, 33(6): 065401. doi:10.1088/1361-6528/ac335a | |
64. | Ma, R., Zhou, K., Sun, Y. et al. Achieving high efficiency and well-kept ductility in ternary all-polymer organic photovoltaic blends thanks to two well miscible donors. Matter, 2022, 5(2): 725-734. doi:10.1016/j.matt.2021.12.002 | |
65. | Kulszewicz-Bajer, I., Nowakowski, R., Zagórska, M. et al. Copolymers Containing 1-Methyl-2-phenyl-imidazole Moieties as Permanent Dipole Generating Units: Synthesis, Spectroscopic, Electrochemical, and Photovoltaic Properties. Molecules, 2022, 27(3): 915. doi:10.3390/molecules27030915 | |
66. | Ren, H., Ma, Y., Liu, H.-M. et al. Absorption Spectrum-Compensating Configuration Reduces the Energy Loss of Nonfullerene Organic Solar Cells. Advanced Functional Materials, 2022, 32(8): 2109735. doi:10.1002/adfm.202109735 | |
67. | Li, Y., Li, T., Wang, J. et al. Intrinsically inert hyperbranched interlayer for enhanced stability of organic solar cells. Science Bulletin, 2022, 67(2): 171-177. doi:10.1016/j.scib.2021.09.013 | |
68. | Shang, L., Qu, S., Deng, Y. et al. Simple furan-based polymers with the self-healing function enable efficient eco-friendly organic solar cells with high stability. Journal of Materials Chemistry C, 2022, 10(2): 506-516. doi:10.1039/d1tc05111c | |
69. | Doat, O., Barboza, B.H., Batagin-Neto, A. et al. Review: materials and modelling for organic photovoltaic devices. Polymer International, 2022, 71(1): 6-25. doi:10.1002/pi.6280 | |
70. | Xu, W., Chang, Y., Zhu, X. et al. Organic solar cells based on small molecule donor and polymer acceptor. Chinese Chemical Letters, 2022, 33(1): 123-132. doi:10.1016/j.cclet.2021.07.028 | |
71. | Xu, J., Sun, A., Xiao, Z. et al. Efficient wide-bandgap copolymer donors with reduced synthesis cost. Journal of Materials Chemistry C, 2021, 9(45): 16187-16191. doi:10.1039/d1tc01746b | |
72. | Ali, H.M., Reda, S.M., Ali, A.I. et al. A quick peek at solar cells and a closer insight at perovskite solar cells. Egyptian Journal of Petroleum, 2021, 30(4): 53-63. doi:10.1016/j.ejpe.2021.11.002 | |
73. | You, X., Xia, P., Li, Y. et al. Unfused vs fused thienoazacoronene-cored perylene diimide oligomer based acceptors for non-fullerene organic solar cells. Dyes and Pigments, 2021. doi:10.1016/j.dyepig.2021.109833 | |
74. | Xu, C., Jin, K., Xiao, Z. et al. Wide Bandgap Polymer with Narrow Photon Harvesting in Visible Light Range Enables Efficient Semitransparent Organic Photovoltaics. Advanced Functional Materials, 2021, 31(52): 2107934. doi:10.1002/adfm.202107934 | |
75. | Qin, Y., Chang, Y., Zhu, X. et al. 18.4% efficiency achieved by the cathode interface engineering in non-fullerene polymer solar cells. Nano Today, 2021. doi:10.1016/j.nantod.2021.101289 | |
76. | Chen, X., Wang, D., Wang, Z. et al. 18.02% Efficiency ternary organic solar cells with a small-molecular donor third component. Chemical Engineering Journal, 2021. doi:10.1016/j.cej.2021.130397 | |
77. | Xu, C., Yao, C., Zheng, S. Effects of lateral-chain thiophene fluorination on morphology and charge transport of BDT-T based small molecule donors: a study with multiscale simulations. Journal of Materials Chemistry C, 2021, 9(41): 14637-14647. doi:10.1039/d1tc03784f | |
78. | Xie, L., Liu, Z., Tang, W. et al. Structure influence of alkyl chains of thienothiophene-porphyrins on the performance of organic solar cells. Materials Reports: Energy, 2021, 1(4): 100066. doi:10.1016/j.matre.2021.100066 | |
79. | Markina, A., Lin, K.-H., Liu, W. et al. Chemical Design Rules for Non-Fullerene Acceptors in Organic Solar Cells. Advanced Energy Materials, 2021, 11(44): 2102363. doi:10.1002/aenm.202102363 | |
80. | Huang, H., Jiang, L., Peng, J. et al. High-Performance Organic Phototransistors Based on D18, a High-Mobility and Unipolar Polymer. Chemistry of Materials, 2021, 33(20): 8089-8096. doi:10.1021/acs.chemmater.1c02839 | |
81. | Gao, X., Su, Z., Qu, S. et al. Efficient and moisture-resistant organic solar cellsviasimultaneously reducing the surface defects and hydrophilicity of an electron transport layer. Journal of Materials Chemistry C, 2021, 9(38): 13500-13508. doi:10.1039/d1tc03409j | |
82. | Lan, W., Gu, J., Wu, S. et al. Toward improved stability of nonfullerene organic solar cells: Impact of interlayer and built-in potential. EcoMat, 2021, 3(5): e12134. doi:10.1002/eom2.12134 | |
83. | Shi, Y., Ding, L. n-Type acceptor-acceptor polymer semiconductors. Journal of Semiconductors, 2021, 42(10): 100202. doi:10.1088/1674-4926/42/10/100202 | |
84. | Sun, A., Xu, J., Zong, G. et al. A wide-bandgap copolymer donor with a 5-methyl-4Hdithieno[ 3, 2-e:2', 3'-g]isoindole-4, 6(5H)-dione unit. Journal of Semiconductors, 2021, 42(10): 100502. doi:10.1088/1674-4926/42/10/100502 | |
85. | Meng, X., Jin, K., Xiao, Z. et al. Side chain engineering on D18 polymers yields 18.74% power conversion efficiency. Journal of Semiconductors, 2021, 42(10): 100501. doi:10.1088/1674-4926/42/10/100501 | |
86. | Yuan, X., Zhao, Y., Zhan, T. et al. A donor polymer based on 3-cyanothiophene with superior batch-to-batch reproducibility for high-efficiency organic solar cells. Energy and Environmental Science, 2021, 14(10): 5530-5540. doi:10.1039/d1ee01957k | |
87. | Park, S.H., Park, S., Lee, K.J. et al. Development of interlayers based on polymethacrylate incorporating tertiary amine for organic solar cells with improved efficiency and stability. Dyes and Pigments, 2021. doi:10.1016/j.dyepig.2021.109523 | |
88. | Peng, W., Lin, Y., Jeong, S.Y. et al. Using Two Compatible Donor Polymers Boosts the Efficiency of Ternary Organic Solar Cells to 17.7%. Chemistry of Materials, 2021, 33(18): 7254-7262. doi:10.1021/acs.chemmater.1c01433 | |
89. | Li, Y., Lin, Y. Planar heterojunctions for reduced non-radiative open-circuit voltage loss and enhanced stability of organic solar cells. Journal of Materials Chemistry C, 2021, 9(35): 11715-11721. doi:10.1039/d1tc01536b | |
90. | Lee, Y.W., Yeop, J., Lim, H. et al. Fullerene-Based Triads with Controlled Alkyl Spacer Length as Photoactive Materials for Single-Component Organic Solar Cells. ACS Applied Materials and Interfaces, 2021, 13(36): 43174-43185. doi:10.1021/acsami.1c14901 | |
91. | Li, D., Zeng, Y., Chen, Z. et al. Investigating the reason for high FF from ternary organic solar cells. Journal of Semiconductors, 2021, 42(9): 090501. doi:10.1088/1674-4926/42/9/090501 | |
92. | Yang, X., Ding, L. Organic semiconductors: Commercialization and market. Journal of Semiconductors, 2021, 42(9): 090201. doi:10.1088/1674-4926/42/9/090201 | |
93. | Li, S., Sun, Y., Zhou, B. et al. Concurrently Improved Jsc, Fill Factor, and Stability in a Ternary Organic Solar Cell Enabled by a C-Shaped Non-fullerene Acceptor and Its Structurally Similar Third Component. ACS Applied Materials and Interfaces, 2021, 13(34): 40766-40777. doi:10.1021/acsami.1c13035 | |
94. | Nie, Q., Tang, A., Guo, Q. et al. Benzothiadiazole-based non-fullerene acceptors. Nano Energy, 2021. doi:10.1016/j.nanoen.2021.106174 | |
95. | Luo, Y., Chen, X., Xiao, Z. et al. A large-bandgap copolymer donor for efficient ternary organic solar cells. Materials Chemistry Frontiers, 2021, 5(16): 6139-6144. doi:10.1039/d1qm00835h | |
96. | Zhang, X., Li, C., Qin, L. et al. Side-Chain Engineering for Enhancing the Molecular Rigidity and Photovoltaic Performance of Noncovalently Fused-Ring Electron Acceptors. Angewandte Chemie - International Edition, 2021, 60(32): 17720-17725. doi:10.1002/anie.202106753 | |
97. | Zeng, Y., Li, D., Xiao, Z. et al. Exploring the Charge Dynamics and Energy Loss in Ternary Organic Solar Cells with a Fill Factor Exceeding 80%. Advanced Energy Materials, 2021, 11(31): 2101338. doi:10.1002/aenm.202101338 | |
98. | Ji, X., Xiao, Z., Sun, H. et al. Polymer acceptors for all-polymer solar cells. Journal of Semiconductors, 2021, 42(8): 080202. doi:10.1088/1674-4926/42/8/080202 | |
99. | van der Staaij, F.M., van Keulen, I.M., von Hauff, E. Organic Photovoltaics: Where Are We Headed?. Solar RRL, 2021, 5(8): 2100167. doi:10.1002/solr.202100167 | |
100. | Cai, Y., Li, Y., Wang, R. et al. A Well-Mixed Phase Formed by Two Compatible Non-Fullerene Acceptors Enables Ternary Organic Solar Cells with Efficiency over 18.6%. Advanced Materials, 2021, 33(33): 2101733. doi:10.1002/adma.202101733 | |
101. | Das, P., Behura, S.K., McGill, S.A. et al. Development of photovoltaic solar cells based on heterostructure of layered materials: challenges and opportunities. Emergent Materials, 2021, 4(4): 881-900. doi:10.1007/s42247-021-00205-6 | |
102. | Ren, J., Bi, P., Zhang, J. et al. Molecular design revitalizes the low-cost PTV-polymer for highly efficient organic solar cells. National Science Review, 2021, 8(8): nwab031. doi:10.1093/nsr/nwab031 | |
103. | Jin, L., Ma, R., Liu, H. et al. Boosting Highly Efficient Hydrocarbon Solvent-Processed All-Polymer-Based Organic Solar Cells by Modulating Thin-Film Morphology. ACS Applied Materials and Interfaces, 2021, 13(29): 34301-34307. doi:10.1021/acsami.1c07946 | |
104. | Hofinger, J., Putz, C., Mayr, F. et al. Understanding the low voltage losses in high-performance non-fullerene acceptor-based organic solar cells. Materials Advances, 2021, 2(13): 4291-4302. doi:10.1039/d1ma00293g | |
105. | Song, J., Zhu, L., Li, C. et al. High-efficiency organic solar cells with low voltage loss induced by solvent additive strategy. Matter, 2021, 4(7): 2542-2552. doi:10.1016/j.matt.2021.06.010 | |
106. | Wang, X., Sun, Q., Gao, J. et al. Recent progress of organic photovoltaics with efficiency over 17%. Energies, 2021, 14(14): 4200. doi:10.3390/en14144200 | |
107. | Tang, A., Xiao, Z., Ding, L. et al. ∼1.2 v open-circuit voltage from organic solar cells. Journal of Semiconductors, 2021, 42(7): 070202. doi:10.1088/1674-4926/42/7/070202 | |
108. | Jiang, Y., Jin, K., Chen, X. et al. Post-sulphuration enhances the performance of a lactone polymer donor. Journal of Semiconductors, 2021, 42(7): 070501. doi:10.1088/1674-4926/42/7/070501 | |
109. | Li, X., Xu, J., Xiao, Z. et al. Dithieno[3', 2':3, 4;2'', 3'':5, 6]benzo[1, 2-c][1, 2, 5]oxadiazole-based polymer donors with deep HOMO levels. Journal of Semiconductors, 2021, 42(6): 060501. doi:10.1088/1674-4926/42/6/060501 | |
110. | Jin, K., Xiao, Z., Ding, L. 18.69% PCE from organic solar cells. Journal of Semiconductors, 2021, 42(6): 060502. doi:10.1088/1674-4926/42/6/060502 | |
111. | Guan, W., Yuan, D., Wu, J. et al. Blade-coated organic solar cells from non-halogenated solvent offer 17% efficiency. Journal of Semiconductors, 2021, 42(3): 030502. doi:10.1088/1674-4926/42/3/030502 | |
112. | Liu, L., Xiao, Z., Zuo, C. et al. Inorganic perovskite/organic tandem solar cells with efficiency over 20%. Journal of Semiconductors, 2021, 42(2): 020501. doi:10.1088/1674-4926/42/2/020501 | |
113. | Yilmaz, T.. The hydrothermal synthesis of blue-emitting boron-doped CQDs and its application for improving the photovoltaic parameters of organic solar cell. Turkish Journal of Chemistry, 2021, 45(6): 1828-1840. doi:10.3906/kim-2104-14 | |